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Abstract

The main limitations in performing uncertainty analysis of CFD models using con-
ventional methods are associated with cost and effort. For these reasons, there is
a need for the development and implementation of efficient stochastic CFD tools
for performing uncertainty analysis. One of the main contributions of this research
is the development and implementation of Intrusive and Non-Intrusive methods us-
ing polynomial chaos for uncertainty representation and propagation. In addition, a
methodology was developed to address and quantify turbulence model uncertainty. In
this methodology, a complex perturbation is applied to the incoming turbulence and
closure coefficients of a turbulence model to obtain the sensitivity derivatives, which
are used in concert with the polynomial chaos method for uncertainty propagation of
the turbulence model outputs.
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Chapter 1

Introduction

1.1 Error and Uncertainty in CFD Models

The common practice in CFD analysis and design is to compute a deterministic or
single solution on a fixed grid. This practice will be unacceptable in the near future
for several reasons. First, it is impossible to infer a level of accuracy or uncertainty
from deterministic CFD models that contain errors and uncertainties. Second, all
practical CFD models and parameters are known only to a certain level of accuracy
or uncertainty. Thirdly, the reliability of CFD analysis and design is reduced when
uncertainties and errors are neglected in the CFD models. For these reasons, it is
important to develop methods that perform error and uncertainty analysis in CFD
models.

A widely known method for performing basic uncertainty analysis for determinis-
tic systems is the standard Monte Carlo(MC) method. The procedure is: (1) sample
input random variable from its assumed probability density function(PDF), (2) com-
pute deterministic output for each sampled input value, and (3) determine statistics
of the output distribution such as the mean and the variance. However, the main

limitations of the MC method is associated with cost and effort. For example, the



MC method typically requires a large number of model runs that would be beyond the
reach of current computational power. To date, performing model runs for realistic
aerodynamics problems that require the solution of complex flow fields is prohibitively
expensive. In fact, this is one of the motivations for the development of alternative

methods.

1.2 Sources of Error and Uncertainty

It is important to distinguish between errors and uncertainties associated with the
modeling and simulation process. These terms are commonly used interchangeably
in the scientific literature, and can be defined in many forms depending on the ap-
plication. For CFD simulations, the definition given by Oberkampf and Blotter[59] is
adopted.

They defined uncertainty as,

A potential deficiency in any phase or activity of modeling and simulation

process that is due to a lack of knowledge
And error is defined as,

A recognizable deficiency in any phase or activity of modeling and simu-

lation that is not due to a lack of knowledge
They also group sources of error and uncertainty in four general categories:
1. Physical modeling
2. Discretization and solution errors
3. Computer round-off error.

4. Programming errors



The physical modeling process is classified as a source of uncertainty according
to the definition given by Oberkampf and Blotter[59]. Physical modeling uncertain-
ties arise from mathematical model form assumptions, boundary conditions, initial
conditions, and data input to a code. In general, data inputs, initial and boundary
conditions to a code (e.g., geometry data, free-stream conditions) are rarely or if at
all exactly known.

The discretization and solution process are classified as sources of error that can
be quantified and reduced using available methods in the literature. Discretization
error arises from the replacement of the partial differential equations(PDEs) of the
physical models, auxiliary models, and boundary conditions by numerical algebraic
equations. In Roache[66], discretization error is defined as the difference between the
exact solution to the discrete equations and analytical solution to the PDEs.

Computer round-off and programming(or user) processes are also sources of error
that can be minimized or reduced. Computer round-off error arise from finite precision
floating-point numbers which can only represent discrete points on the real number
line. In Roache[66], computer round-off error is defined as the difference between
the exact solution to the discrete equations and computer solution. Table 1.1 shows

many examples of sources of uncertainty and error in CFD models.

1.3 Objective of the Thesis

The primary objective of this thesis is to develop and implement methods that perform
uncertainty analysis of CFD simulations in order to reduce the associated cost and
computational effort required with conventional methods such as the MC method.
The second objective of this thesis is to quantify the turbulence model uncer-
tainty in the Spalart-Allmaras model. It is generally believed that turbulence model

uncertainty is one of the largest sources of uncertainty in modern Reynolds-Averaged



Table 1.1: Source of Uncertainty and Error in CFD Simulations - summarized from
Oberkampf and Blotter, Ref. [80]

’ Source ‘ FExamples ‘

Physical Modeling Incompressible Flow
Inviscid Flow
Potential Flow
Viscous Flow
Chemically Reacting Flow
Transitional/Turbulent Flow
Auxiliary Physical Models Equation of State
Thermodynamics properties
Transport properties
Chemical models, reaction, and rates
Turbulence model
Initial & Boundary Conditions Wall roughness
Far-field
Free Surface
Free-stream Condition
Geometry Representation
Discretization & Solution | Truncation error - spatial and temporal
[terative convergence - steady state
[terative convergence - time dependent
Round-Off Error Finite - precision arithmetic
Programming & User Error




Navier-Stokes(RANS) simulations, and is a large contributor of the scatter observed

between experimental and CFD data [2].

1.4 Outline of the Thesis

Chapter 1 presented a brief introduction to the concepts of error, uncertainty, and
its origins in the context of CFD models. It has also discussed the importance of
uncertainty analysis of CFD models and the associated limitations with current con-
ventional methods. This chapter summarizes the objectives and outline of this thesis
depicted in Figure 1.1.

Chapter 2 presents a thorough review to the types of errors, uncertainties, and its
origins in the context of CFD models. It also addresses the main approaches for the
representation and propagation of uncertainty associated with the model input and
model formulation of CFD models.

Chapter 3 presents the development and implementation of the so called Intrusive
method. This chapter addresses the uncertainty in the CFD input parameters that are
modeled by replacing all dependent variables and random parameters in the governing
equations with their Polynomial Chaos(PC) expansions. It also presents a supersonic
wedge flow and expansion corner case study that illustrates the application of the
Intrusive method.

Chapter 4 presents the development and implementation of the so called Non-
Intrusive methods. This chapter addresses the need to develop Non-Intrusive methods
for the purpose of overcoming some of the difficulties associated with the Intrusive
method. It also presents the Onera-M6-Wing case study that illustrates an application
of Non-Intrusive methods.

Chapter 5 presents the uncertainties that arise in the physical modeling process



for various CFD turbulence models. It describes the methodology for computing tur-
bulence model uncertainty. This chapter uses the Non-Intrusive method to quantify
the effect of uncertainties in the closure coefficients of the Spalart-Allmaras turbu-
lence model and wall functions on the aerodynamic coefficients. It also presents the
Onera-M6-Wing case study that illustrates the methodology.

Chapter 6 presents the conclusions and discussions of this thesis. This is followed
by the bibliography.

Appendix A.1 presents the definition of the operator form. Appendix B.1 presents
the full flux Jacobian matrix in deterministic form. Appendix B.2 presents the full
flux Jacobian matrix in standard PC form. Appendix B.3 presents the full flux
Jacobian matrix in operator form. Appendix C.1 presents the Van Leer split flux
vector(VLSFV) in deterministic form. Appendix C.2 presents the VLSFV in standard
PC form. Appendix C.3 presents the VLSFV in PC Compact form. Appendix C.4
presents VLSFV Jacobian matrix in deterministic form. Appendix C.5 presents the

VLSFV Jacobian matrix in PC compact form.
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Chapter 2

Background Review

2.1 Types and Origins of Uncertainty

Uncertainty in CFD models can be categorized into aleatoric (or inherent uncer-
tainty) and epistemic (or model form and parameter) uncertainty (see [80]). They

are described below.

2.1.1 Inherent Uncertainty

Inherent uncertainty applies to processes or quantities in CFD models that are ac-
cepted to be intrinsically variable. Furthermore, processes or quantities that are inher-
ently stochastic arise from the unavoidable unpredictability. For example, chemically

reacting gas and transitional turbulent flow are inherently stochastic in nature.

2.1.2 Model Form Uncertainty

In the modeling process, assumptions and simplifications are often required, due to a
lack of knowledge. Furthermore, the modeling process leads to mathematical models
that are often simplified representations of a phenomena under study. The assump-

tions and simplifications in these mathematical models often give rise to uncertainty,



and are a key source of uncertainty. It would be possible to treat the mathematical
model formulation as an error that can be corrected or reduced. However, the exact
mathematical model formulation representing a physical phenomena is rarely known,
and must be treated according to the definition of uncertainty.

The selection of spatial and temporal resolution (e.g., numerical grid cell size)
in the application of numerical models may also give rise to model uncertainty. For
example, Hosder [41] shows the strong interaction between spatial resolution and
turbulence model uncertainties. Furthermore, he shows that a finer grid resolution
does not necessarily result in a more accurate prediction and reduced turbulence
model uncertainty. This is also evident in the First AIAA CFD Drag Prediction
Workshop [2] where the participants identified the mesh resolution to be inadequate
for the CFD predictions. Furthermore, the lack of grid convergence in the CFD
predictions led to large variations between the CFD results running similar cases.

The selection of model boundaries may also be a type of simplification that give
rise to model uncertainty. For example, any model may have limited boundaries
in terms of time, space, number of chemical species, and so on. Other overlooked
phenomenon such as rough walls, far-field boundary, free surface, and geometry rep-

resentation may also play a role in model uncertainty.

2.1.3 Parameter Uncertainty

The true value of model parameters can never be known exactly, and must be treated
according to the definition of uncertainty. Uncertainty in model parameters originate
from significant uncertainties associated with their estimates. For example, uncer-
tainties of parameter measurement involve (1) sampling variability, and (2) systematic
bias due to imprecise calibration. Another potential source of parameter uncertainty

is the significant large error associated with a small sample size.
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2.2 Review of Uncertainty Analysis

The two main approaches for the representation of uncertainties are non-probabilistic

(or deterministic) and probabilistic methods.

2.2.1 Non-Probabilistic Methods

In a non-probabilistic approach, uncertainties are often represented by the widest
error bounds of model parameters and inputs. The maximum error bounds of model
outputs must then be necessarily computed since the probability structure of the
model inputs or parameters are not taken into account (see [81]). Furthermore, prop-
agating error using deterministic approaches is based on the assumption that each
model input interval contains its entire uncertainty. This assumption may not always
be the case. For example, an estimate of the standard deviation of available exper-
imental data may be less (or possibly much less) than the width of the uncertainty
model input interval. Two deterministic uncertainty analysis methods (1) Interval
Mathematics and (2) propagation of error using sensitivity derivatives are discussed

below.

Interval Mathematics

Interval mathematics is used for uncertainty estimation for cases where information
about the type of uncertainty in the model parameters is not available. Furthermore,
unknown or indeterminate probabilities of model parameters is very often a result
of imprecise measurements, and the existence of alternative methods to estimate
model parameters. For such cases, interval mathematics uses error bounds to estimate
uncertainty. Note that this method does not require information about the type of
uncertainty in the parameters (see G. Alefeld and J. Herzberger [4]).

The basic idea in interval mathematics is to compute error bounds on various



11

model outputs based on the error bounds of the model inputs and parameters. In
interval mathematics, every uncertain parameter and uncertain model input are de-
scribed by an interval that contains an upper and lower limit without a probability
structure. Consequently, interval mathematics represent the maximum error bounds
(i.e., worst case result). The interval representation of a model parameter, x, de-
fined in terms of the interval midpoint value, Z, and uncertainty, ¢ > 0, is given by
x = T[l —€,1+ ¢]. Note that the lower limit is given by Z(1 — ¢€) and the upper
limit is given by Z(1 + ¢€). Functions of intervals (e.g., intervals of model outputs) are
computed using special arithmetic procedures. In order to demonstrate arithmetic
operations of interval mathematics, let @ and b be given by |a;, a,] and [b;, b,], where

a; < a, and b; < b,. Then, arithmetic operations of interval mathematics are given

a+b = [a;+b,a, + by,
a—b = [al—bl,au—bu], (21)
a-b = [min(aby, a;by, ayby, a,by), max(aby, aiby, a,by, ayby)),

11

ofb = e || i0¢ b

An application of interval analysis in the literature includes the treatment of un-
certainty in the chemical time scale, 7, for the scalar wave equation with a source
term performed by Walters [81]. For this example, he illustrates that different interval
results can be obtained for mathematically equivalent pointwise input for different
model structural formulation. Further, he shows that this observation is not related
to the precision of the computations. He also illustrates that iteration loops required
by the numerical algorithms for this case resulted in large error growth without some
modification. The fact that (1) probabilistic methods provide more information than

interval analysis, (2) many CFD numerical models rely on iteration loops, and (3)



12

available information about the input probability structure is ignored in interval anal-

ysis, detracts from the use of this approach and hence is not recommended in general.

Propagation of Error using Sensitivity Analysis

Propagation of error using sensitivity analysis has been in use for many years in the
literature (see e.g. [22], [31], [32], [39], [57], [63], [76]). The objective of sensitivity
analysis is to estimate the rate of change in model outputs with respect to changes
in model inputs. Furthermore, it can also be used to assess the relative contributions
of the model inputs and parameters uncertainty to the model outputs uncertainty.
There are a number of sensitivity analysis methods in the literature (see Isuka-
palli [47]). The desired method of choice depends upon (a) the type of sensitivity
measured, (b) user-defined accuracy, and (c¢) computational cost. In the CED com-
munity, the desired choice for sensitivity analysis is the local gradient approximation
(see Walters [81]). The estimate of the model sensitivity is given by gradients or par-
tial derivatives at a local point in the temporal and spatial domain. If k is a set of m
parameters (kq, ko, -+ , k), and u is a vector of n output variables (u,ug, - ,uy),

then the sensitivity, S, is given by,

811,,‘
ok;’

S, = (2.2)

If 0k; is the error associated with parameter k; , then a deterministic approximation

to the output error, du;, is given by,

n 1/2
ou; = [Z(sf)? 5/@-] , (2.3)

where 1 =1,2,--- ;nand j=1,2,--- ,m.
There are a number of methods for computing sensitivity derivatives. The de-
sired method of choice depends upon the difficulty of implementation and accuracy

of the results. The main approaches for computing sensitivity derivatives are (1)
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Finite Difference, (2) Complex Variable Formulation, (3) Automatic Differentiation,
(4) Discrete Adjoint Method, and (5) the Sensitivity Equation Method (SEM). These

methods are discussed below.

Finite Difference

In this approach, the CFD model is treated as a ”black box” and sensitivity derivatives
are computed by finite differencing perturbed solutions. For example, if f is an output
variable of a CFD model with a given perturbation parameter or input value, dx, then

the sensitivity of f with respect to a parameter or input variable, z, is given by,

df _ flz+dz) — f(z - dx)
de 20z ’

Note that the implementation of this central difference scheme is straightforward,

(2.4)

and it’s theoretically second-order accurate. However, its accuracy depends on the
perturbation size. For example, Nielsen [58] shows subtractive cancellation errors
arise in finite difference schemes due to finite precision arithmetic regardless of the
theoretical order of the scheme. In effect, this limits the step size, dx, that can be
used. Note that the limit or optimal step size is not known a priori, and may vary
from one design variable to the next. Further, Equation 2.4 requires the function
evaluation of two well-converged solutions which in the case of realistic aerodynamic

problems may be prohibitively expensive.

Complex Variable Formulation

In this approach, an output CFD function f assumed to be analytic, is expanded in

a Taylor series using a complex perturbation parameter or input value, h, as

df  R2Ef ik dPf htdf

ih) — e i e S W R 9.
e +ih) = f(z) + Zhdx 2 dx? 6 dr3 + 24 dx* + (25)
Solving this equation for the imaginary part of the function yields,
d 1 h
[ Imlf@ b)) | e, (2.6)

dr h
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The implementation of this method is straightforward. That is, by declaring all
variables of a function as complex and applying complex perturbation to the design
variable of interest, the sensitivity derivative of a design variable can be obtained by
evaluating the imaginary part of a function. Furthermore, Nielsen [58] showed that
Equation 2.6 allows true second order accuracy to be achieved, since no subtraction of
terms is involved. Moreover, two additional digits of accuracy can be obtained when
the step size, h, is reduced by an order of magnitude. However, the drawbacks to this
method are associated with the additional cost of performing complex arithmetic,

which can be on the order of three times the cost of the original solver.

Automatic Differentiation of Source Code

In this approach, automatic differentiation is applied to a given original source code
to generate a corresponding derivative calculating code (see [12], [13], [33], [47] for
examples in Fortran). Given the source code, and the definition of the dependent
and independent generic variables of interest, automatic differentiation generates a
derivative code that is used to estimate the sensitivity and uncertainty of model
outputs with respect to model inputs. Note that this method does not require in-
formation about the model equation, and the derivative code can be calculated with
the accuracy of the machine precision. Although automatic differentiation can be ap-
ply to non-smooth functions, the computational cost for real world applications may
be prohibitive. Another drawback to this approach, which employs a discretize-then-
differentiate scheme, is that mesh derivatives are still not well understood, particularly

in cases where meshes are prescribed adaptively (see [77]).

SEM

In this approach, the model equations are differentiated with respect to any generic

variable of interest. The subsequent linear sensitivity equations are then discretized
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and solved separately from the original model equations. Note that this approach
is also termed as the direct approach, and is often applied to cases involving many
objectives or constraints with relatively few design variable (see [47], [58]). In [31],
Godfrey and Cliff used the SEM for turbulent-flow computations that incorporates
an eddy-viscosity model. Further, they showed the solutions to the linear sensitivity
equations required approximately 1% of the computational time required to solve the
non-linear flow problem. In [14], Borggaard also shows that using the SEM could
reduce CPU times by 50 percent or more. However, the drawback to this method is
that it requires the modification of the original model equations, and may involve the
reformulation of the auxiliary equations. These requirements may be impractical or

impossible in terms of the prohibitive amounts of resources that could be required.

Discrete Adjoint Method

In this approach, a user-defined cost function, F', is minimized using the Discrete
Adjoint (DA) equations described in Nielsen [57]. The CFD flow equation residuals,
R, and the cost function, F', are first linearized with respect to the flow solution,
Q, and the design variable of interest, D. After this linearization, a set of linear

equations are then solved to find the Lagrange multipliers, A, given by:

() )

where )\ is defined as the effect of the flow residual on the cost function:

OF

== (2.8)

Once the vector of Lagrange multipliers is known, an iterative scheme for the sensitiv-
ity derivatives 0Q /0D is derived with Lagrange multipliers operating on the discrete
version of the governing flow equations (for details see [58]). This iterative scheme can

then be solved efficiently using standard methods. Note the DA method is commonly
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used in aerodynamic optimization design problems, and the basic implementation
precludes the need to compute the sensitivity derivatives directly (see [81]). How-
ever, the direct approach (e.g., SEM or Complex Variable Formulation) may be more
appropriate for sensitivity /uncertainty analysis, since the solution of each design vari-
able yields sensitivity information for all of the dependent variables in the flow field

(see [58]).

2.2.2 Probabilistic Methods

In the probabilistic approach, uncertainty is represented by the probability of the ran-
dom event. The probability of a random event occurring can be interpreted in terms
of frequency of occurrence of that event, and is determined by the ratio of the number
of favorable outcomes to the total number of outcomes. Furthermore, probability is
mathematically expressed as a decimal range from a low of 0 (no chance) to a high
of 1.0 (certainty). An assessment of these underlying events can be obtained when
probability analysis is applied to a collection of data or model parameters and inputs.
Furthermore, probabilistic analysis is the prevalent choice for uncertainty analysis of
physical systems when estimates of the probability distribution of uncertain model
inputs or parameters are available.

There are number of statistical text books that describe the theory of probability.
For example, Hafner [35], Papoulis [61], and Tsokos [78] explain the concepts and
applications of probabilistic analysis in detail. Uncertainties associated with model
inputs and parameters can be quantified by probability distributions, and an estimate
of the model output probability distribution can be obtained. Note that this process is
comprised of two stages. The first stage involves the determination of the probabilistic
distribution of the model inputs and parameters, and model formulation. The second
stage involves the propagation of uncertainty through models. These two stages are

described below.
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Probability distribution of inputs

Probability distributions of model inputs and parameters are estimated via statistical
techniques that use available data or a representative number of samples. These
techniques can be found in statistical textbooks (see [61]). In cases of limited data,
estimates of probability distributions would require expert judgment. For example, a
uniform distribution would be chosen for a range of possible values, where all values
have an equal likelihood of occurring. Similarly, a normal distribution would be
chosen to describe a data set with negligible random and systematic errors. Table 2.1

illustrates some of the probability distributions used for uncertainty analysis.

Propagation of uncertainty through models

The main objective of uncertainty propagation is to compute the probability distri-
bution of model outputs. The output probability distribution can then be used to
estimate statistical parameters of interest (e.g., mean and variance of model outputs).
The main techniques for propagating uncertainty through models are (1) Sampling
Based Methods, and (2) Spectral Methods. These techniques are discussed in the

next section.

2.2.3 Sampling Based Methods

Sampling based methods involved running a model at a set of sampled points, and
using the model results at the sampling points in order to relate the model inputs and
outputs. The advantage of these methods is that the model equation(s) or existing
code is treated as a blackbox(i.e., no modification of the model equation(s) or existing
code is required). Widely used sampling based methods are: (1) MC, and (2) Latin
Hypercube Sampling. These methods are discussed below.
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Table 2.1: PDF for representing uncertainties in model inputs:
Distribution Parameters & Moments
Conditions
Uniform a,b Mean = “T*b
Var = —(bzg ks
Normal w,o, o >0 Mean = p
Var= o2
Mode =
Lognormal w,o, o >0 Mean = e(#to°/2)
Var= (7 — 1)euta?)
Mode = e+
Gamma a,b, Mean = ab
a>0,b>0 Var = ab?
Mode = (a — 1)b
Exponential AMA>0 Mean = %
Var = %
Mode =0
Weibull a Mean =T'(1+ 1)

Var = I'(1+2)-T(1+1)
Mode = (1 — %)%,a >1

Extreme Value

Mean =0
Var =1
Mode =0
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MC Methods

There are a number of MC methods described in the literature ([19],[38], [50], [70]).
They are the most widely used means for uncertainty analysis, and have been applied
to fields ranging from chemical engineering [47] to aerospace engineering [82]. They
can also be used to solve deterministic problems such as finding the area under a
curve [18]. The main advantage of the MC methods is that the model equation(s) or
existing code is treated as a blackbox.

The simplest of all MC methods [81], referred to as crude (or basic) MC, involves
the sampling of input random variables from their known or assumed PDF, and com-
puting deterministic model output for each of the sample input values. The statistics
of the model output distribution can then be determined from the deterministic out-
puts. The statistics of a distribution can be computed from the definition of the

expected value of a function of a random variable, &, of g(£), namely

Elg(&)] = /g(é)p(é)dﬁ, (2.9)

where p(§) is the PDF of the distribution that describes some event or process. Note
the integration domain is supported by the PDF. The mean of the probability distri-
bution is given by

Ezﬂﬂz/@@&- (2.10)

The 7** moment about the mean is given by

EM—@WI/@—@%®&~ (2.11)

The coefficients of variance, skewness, and kurtosis are related to the 27, 374, and 4"
moments about the mean, respectively. One of the drawbacks of the MC method is
that the convergence of the standard error estimate is relatively slow. For example,

the convergence of the MC method [50] to the exact stochastic solution as the number
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of samples, n — o0, is given by

ore = —— . (2.12)

NG

Since this method requires a large number of sample or model runs, its not suitable for
computationally intensive problems. The time and resources required by this method

may be prohibitively expensive for realistic aerodynamics problems.

Latin Hypercube Sampling (LHS)

Substantial computational efficiency over the basic MC method is accomplished by
the use of the Modified MC method. The number of necessary solutions is reduced
in the Modified MC method compared to the basic MC method by efficient sampling
from the input probability distribution. One such widely used Modified MC method
is the LHS developed by McKay [54]. In this method, the range for each input
uncertain parameter of a model is divided into non-overlapping intervals on the basis
of equal probability. Thus, only one value from each interval is selected at random
with respect to the PDF in the interval. Note that the LHS method has a smaller
variance o than the MC method [54], hence, the convergence of LHS method is much
faster than the MC method. Since the whole parameter space, consisting of all the
uncertain parameters, is partitioned into cells of equal probability, random samples
are generated from all the ranges of possible values. Consequently, this feature gives
insight about the extremes of the probability distributions of the outputs. Note that
this feature is not contained in the basic MC method, where there may be cases that
does not include the extremes of the random sampling. However, the drawback of the
LHS method is that the number of samples or model runs for realistic aerodynamic

problems could still be too large and expensive.
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Moment Methods

Uncertainty analysis in CFD simulation using moment methods have appeared in
the literature (see [43], [44], [45], [76]). Moment methods involves using the trun-
cated Taylor series expanded about the expected value of the inputs. For example, if
u = u(&y, &) is expanded about mean values (&,,&,), the first-order moment approx-

imation of the Taylor series is,

ou

+ 8—52(62 —&y).

L6 -8

U(flafé) = U(EpEQ) + 8_51(

Using Equations 2.9 and 2.11, the expected value and variance are approximately
given by,
Erolu(&, &)] = u(&,, &),
ou

— 20—2+ %‘ 202+2 du du
o0& ¢ & &, : &2 o€, c &, :

where the covariance between the random variables & and & can be defined in terms

Varrolu(&i,&)] = (

of expected values as,

Covar(&1,&) = E[§1& — E(&)E(&))]

Note that first-order first moment (FOFM) approximation is the deterministic value
evaluated at the mean of the inputs, £, and &,. The first-order second moment
(FOSM) method requires the computation of sensitivity derivatives (see, for exam-
ple [63]). For cases involving relatively large variations in the input random variables,
increased accuracy of the model output statistics is obtained using higher order mo-
ment formulas. This requires the estimation of higher order derivatives which may
be impractical in terms of the accuracy and implementation of the method, and the
computational resources required. For example, computing higher order derivatives
in CFD codes is not well understood and further detracts from the use of this method

for uncertainty analysis.
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2.2.4 Spectral Methods

Spectral methods have been used to model and propagate uncertainty in stochas-
tic computational simulations by several researchers. Ghanem and Spanos (see [26],
[27], [28], [29]) who pioneered spectral representation of uncertainty otherwise known
as polynomial chaos expansions, applied this technique to several problems of inter-
est in the structures community. Zang et al. [52] used the PC technique to study
uncertainty propagation for a turbulent, compressible nozzle flow. Xiu and Karni-
adakis [93] analyzed the flow past a circular cylinder and incompressible channel flow
by the spectral method, and extended the method beyond the original formulation
of Wiener [88] to include a variety of basis functions [94]. In 2003, Walters [82] ap-
plied the PC method to a two-dimensional steady-state heat conduction problem for
representing geometric uncertainty.

An important concept of spectral representation of uncertainty is that one may
decompose a random function (or variable) into separable deterministic and stochastic
components. For example, for any generic variable, o*, with random fluctuations, we

can write,

p

o (z,y, 2,6 €) = Z a;(z,y, 2, t) H;(€), (2.13)

i=0

where a;(z,y, 2, t) is the deterministic component and Hl(g) is the random basis func-
tion corresponding to the i'® mode. Effectively, a;(x,v,2,t) is the amplitude of the
it" fluctuation. Here, o* is assumed to be a function of deterministic independent
variables x, ¥, z,t, and the n-dimensional random variable vector 5 = (&,&, -+, &)
which has a specific probability distribution. The discrete sum is taken over the
number of output modes, P = (T‘%ﬁ)! — 1, which is a function of the order of PC, p,
and the number of random dimensions, n. For the basis function, multi-dimensional

Hermite polynomials are used to span the n-dimensional random space, which was

first used by Wiener [88] in his original work known as the homogenous chaos. Many
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Table 2.2: Hermite polynomials of single variable £ up to 10 orders.

[k H,(8) |
0 1
1 §
2 —1+&
3 -3+ &
4 3—662+¢4
5 15 — 1063 + £°
6 —15 4+ 45€2 — 156* + £6
7 —105€ + 10563 — 21€° + £7
8 105 — 420€2 + 210&* — 28¢6 4 ¢8
9 945 — 12603 + 378¢% — 3667 + ¢&°
10 —945 + 4725¢% — 31506* + 63066 — 45¢8 + €10

other choices are possible for basis functions depending on the type of probability dis-
tribution selected for the input uncertainty. For example, Xiu and Karniadakis [93]
described other spectral expansions such as Laguerre polynomials with the Exponen-
tial distribution, Jacobi polynomials with the Beta distribution, etc. A convenient

form of the Hermite polynomials is given by

= 117 K 1or g
H(€) = A1) g (), (2.14)

where k = 0,1,--- ,p and ¢ = 0,1,--- ,n. Note that p is the order of chaos, n is
the number of dimensions, and the row vector 5 = (&,, - ,&,)". Table 2.2 gives
the Hermite polynomials of one-dimensional random variable(e.g., n = 1) up to 10

orders(i.e., £ =& = £). The inner product of two functions f(€) and g(€) is defined
by

(9@ = [ 5ol (EeE (2.15)
where the weight function pN(3 is an n-dimensional Gaussian distribution with unit
variance,

pa(€) = — e HEE (2.16)
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The Hermite polynomials form a complete orthogonal set of basis functions in the
random space, therefore the inner product of the basis functions is zero with respect

to each other,

— —

(Hi(&), H;(€)) = (Hi(§), Hi())di5 , (2.17)

where 6;; is the Kronecker delta function.
The statistics of the distribution for a flow variable at a spatial location can be
calculated after the PC coefficients oy (x, y, 2, t) in Equation 2.13 are determined. The

mean of the random solution is given by

Bre |o*(@,y. 2 t:8)] = (o (29,2, Ho(&))

oo
— - =

_ / o (2, y, 2, 1, ) Ho(E)pw (€)d€

o0

= wp(z,y,2,1), (2.18)

which indicates that the zeroth mode of the expansions corresponds to the expected
value or the mean of o*(z, v, 2, t; E) Similarly, the variance of the distribution can be

obtained as,

VaTPC [O/‘(:E,y,z,t; _j] = <[ *(ZE Yy, z, t; g) (m7yvz7t)]27Hk(g)>
— [ 066 — ol y. 2 H @ (€

> [ (2, y, 2, )/(H(E), Hi(E))] . (2.19)
=1
Note the Gaussian estimates of the variance are provided by k£ = 1,2,...,n modes.

All higher modes provide non-Gaussian interactions.



Chapter 3

Intrusive Approach: Development

and Implementation

3.1 Introduction

The first section of this chapter presents the development and implementation of
the Intrusive method. It describes in detail the derivation of the PC formulation of
the Euler equations in the presence of uncertainty. A standard formulation is given
for the Full Flux vector and Van Leer split flux vector in local coordinates and their
Jacobian matrices. A short-hand compact PC formulation, developed by Walters [85],
results in a simplified but equivalent form of the governing equations that are easy to
understand and implement.

The second section of this chapter illustrate applications of the Intrusive method.
Results have been obtained using stochastic explicit and implicit time integration
schemes for the two-dimensional Euler equations of gas dynamics applied to the 2-D
unit problems: (1) flow over a wedge at supersonic speed, (2) flow over an expansion
corner at supersonic speed, and (3) flow over a cosine airfoil at supersonic speed.

Comparisons of first-order PC results show good agreement with the MC simulations

25
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in which 10,000 realizations were obtained. In addition, several convergence and

solution contour graphs are shown for the three cases.

3.2 Development and Implementation

In the Intrusive approach, uncertainty in the output variables of CFD models due to
uncertainty in model inputs or parameters is represented and propagated by the PC
expansions given by Equation 2.13. All dependent variables and random parameters
(such as viscosity, thermal conductivity, etc.) or random model inputs (such as free-
stream Mach number, geometry, etc.) in the governing equations of the CFD model
are replaced with their PC expansions. Projecting each equation onto k™ basis,
yields P + 1 (see Equation 2.13) times the number of deterministic equations. These
resultant stochastic linear equations can be solved by the same numerical methods

applied to the original deterministic system.

3.2.1 Standard PC Euler Equations

Due to its generality, we work with the integral form of the governing equations

g/QdV—i—]{F-ﬁds—O (3.1)
ot )y S

, where the first term is integrated over the volume, V, and the second term is
integrated over the closed surface, S.

For the special case of the 2-D Euler equations, F = fi 4+ gj and

p pu pu

Q- pu e pu? +p g - puv
pU puv pv2 +p

P€o puh, pvh,

Here, the density is p, the velocity components are u and v, the pressure is p, and

the total internal energy and total enthalpy are given by eq and hg, respectively. The
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components of outward pointing unit normal vector 7 are denoted by n, and n,. The
cell face surface area is denoted by ds.

The Euler Equations are solved deterministically by discretizing the integral form
of the governing equation using a cell-centered finite-volume approach. The integral of
the flux on each face of an element is evaluated with the mid-point rule. The spatial
accuracy is dictated by interpolating the primitive variable vector q(Q) from the
cell-centers to the cell-faces, where q = [p, u, v, p]T. A standard {¢, k} formulation
that allows first-order upwind interpolation and a family of second-order interpolation

formulas is used. Discretizing each element in the domain yields,

Ny
AQ
V——-= ;=0 3.2
2T (32
where,
V= element volume
Ny = number of faces per element

At = time step
F = F-nls

In order to obtain the PC equations for the deterministic components, (i.e., the

—

modes of Q), one simply projects Equation 3.2 onto the 7" basis function ¥, (¢) (for

all 7). This yields

AQU(D), U,() <~
1% N + ;}" =0. (3.3)

On the " face of any element, we denote the projected flux components by
[fl,r fQ,’I‘ f?),’r f4,7‘]T
where, for example

Fip = (F1, () = / TR, Epa (E)dE (3.4)

—

and py (&) is the input probability distribution function.
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3.2.2 Compact PC Formulation

An alternate formulation utilizing operator notation that would be simple to code yet
mathematically equivalent to the original formulation was developed and applied to
the Euler Equations for explicit time integration by Walters [85]. The definition of the
operator will be described by the following simple example. Consider two stochastic
scalar variables, a* and b*,

Na

(l* = Z ai\Ifi = ao‘lj() + a1\111 —+ 4 CLNa\IfNa, (35)
=0
Ny

b= > bW =boWo + bWy + -+ by, U, (3.6)

=0
Note that this can also be written as

a*=a" Uy, b =b" Uy, (3.7)

a

where a and b are column vectors containing the deterministic components of a* and
b*. Likewise, v ~, and U N, are column vectors containing the Hermite polynomials
(e.g. Vo, Uy, ...).

Suppose one wants to compute the product of two stochastic variables, and then

project the product onto a basis function. Let
¢ =a*b". (3.8)

Substitute Equations 3.5 and 3.6 into Equation 3.8 to obtain

Ng Ny
= (Z al\Ifl) (Z qujj>
=0 7=0

No Ny

- Z Z (Zibj\I/i\I/j.

i=0 j=0

(3.9)
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Given the special case of N, =2 and N, = 1, ¢* has the expansion

aobo\yoqlo + Gobl‘Ifo‘Ifl
= + a1b0\111\1/0 + a1b1\111\111 (310)
+ GQbO\PQ\IJO + agbl\pg‘lfl.

Now consider the simpler term,

For demonstration purposes, again let N, = 2 and N, = 1 to expand the above

expression to yield,

c = aobg—l—(lobl

+ a1b0 + a1b1

+ a2b0 + CLle. (311)
Note that the operation
Qo (Iobo a0b1
c=a-b"'=|qa |- [ by b1 } = | aby a1by (3.12)
(05} agbo a2b1

generates all of the terms required to compute the product of two sums. It turns out
that a useful PC operation is to simply convert this matrix to a column vector by, in

effect, flattening it out. Thus, we define the operator ® to be

CL()bO

apb

aobo aobl ot

T Cleo

a®b = Flatten [a-b"] = Flatten | ajby ayby | = b | (3.13)

a

(Zgb() CLle s

Clzbo

asby
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The original problem can now be written using the definition of this operator as

Ng Ny

= Z Z aibj\lfi\lfj

i=0 j=0
= (@b (Uy, @ Uy,). (3.14)

Equation 3.14 is useful for a PC formulation since the deterministic and random

components have been separated, and the operator ® is trivial to code. In the

MATHEMATICA® language, it can be defined by
a_®b_:= Flatten[Transpose[{a}] - {b}], (3.15)

where a and b are input lists containing the amplitudes of the modes. Note that when
projected onto a basis function, the deterministic component can be taken outside of
the integral.

Returning to the example with N, = 2 and N, = 1, the product of two sums

expressed in operator form yields,

¢ = (ab)’. (\I7Na ® \I7Nb)

WoWy
Yoy
Uy,
vy
Uy
Wy Wy

== <CLObO aobl albo G,lbl agbo a2b1>-

aobo\lfo\lfo + aObllIJO\Ill
- + albgqjl\lfo + alblllllllfl (316)
+ ngo\l’ijo + szl\Pg\Ifl.

Observe that Equation 3.16 is equivalent to Equation 3.10. Projecting ¢* onto the 7"

basis function yields,
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<C*7 ‘I]r> = Cr<\1jra ‘;[lr>

No N
- Z Z aibj<\11i\11j, \I/r>

i=0 j=0
— (@b / T (B, @ T )0 p (€)de (3.17)
= (a@b)" (Iy, @ Uy, T,). (3.18)

The last expression (Equation 3.18) is particularly useful when implementing the
Intrusive method in operator form. Note that the term (‘I7 N, ® U N,, Up) is a column
vector containing the inner product of user-defined PC combinations as its elements
defined by equating Equations 3.18 and 3.17. This vector can be easily computed
once the number of user-defined input, internal and output modes are known prior to
beginning the iteration process. The notation in Equation 3.18 for the inner product

is simplified by introducing
(Unyvpr) = (U, ® Uy, Ty).

In the next section, the deterministic full flux vector, the standard PC formulation
of this numerical flux, and the compact formulation are presented using this notation

(\fl N..N,.) from this point forward.

3.2.3 Compact Notation

In order to demonstrate the compact PC formulation for the Euler equations, the full
flux vector is first written in deterministic form, standard PC form, and compact PC
form. The full flux Jacobian matrix is presented in deterministic form, standard PC
form, and compact PC form in Appendix B. Appendix C presents the Van Leer split

flux vector and Jacobian matrix in all three forms.
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PC Full Flux

CFD models use a variety of functions for representing the numerical flux, 7. One

of the most common is the full flux vector in local coordinates. Its components are

given by: ) )
pu
UL + Ny,
Fo= |7 P as (3.19)
PUV + nyp
puh,
where
U = Ny + nyv. (3.20)

Substituting the PC expansions (Equation 2.13) into the vector F (Equation 3.19),
and projecting onto the r'* basis function yields the PC expansion components for

the full flux vector written in the standard form,

Ng1 Ng Ny
Fio = D D> ol (W00, 0,)
i=0 j=0 k=0
Ng1 Ng Ng Ng Ng1 Ng
fgm = Z Z Z Zpkﬂijul<‘lji‘ljj\1jk\1jla \I/,«> + Z ij(nmAs)z<\I/Z\I/J\IIT>
=0 j=0 k=0 [=0 =0 j=0

Ng1 Ng Ng Ng

Ng1 Ng
Far = DO D) oo W0 00, W) + ) 0> pi(ng As) (159,

i=0 j=0 k=0 1=0 i=0 j=0
Ngi N, Ny

Fir = _1222%1% (00,0, )

=0 7=0 k=0
Ngqu Ng Ng Ng

+ 2 Zzzzzpkum%m (W00 W Wy, )

10] 0 k=0 (=0 m=0
(3.21)

with

2
Qi = UWlUm + Vv,
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ﬂij = (TL:EAS)Z‘UJ' + (nyAs)ivj.

Note that As has been folded into the definition of u for convenience. Utilizing the
compact notation described in the previous section, the stochastic flux vector given

by Equation 3.21 can be written in the compact form:

Fir = [p@u- (‘f’Nq,Ngl,Nq,r)
For = p@u) @ u’- (‘fqu,NgthN%H + (nzAs @ p) - <\I7Ng1,Nq7r>
Fap = [(p@u) @ v]"- <‘17NQ,N91,NQ,Nq,r> + (nyAs @ p) - <\I_}N917Nqﬂ'>
Fop = %[p ® )’ - <\f’Nq,Ngl,Nq,r> =+ %[(P ®u) ® ¢ - <\I_}Nq:NglquvN47N¢17T>
(3.22)
where

U= (n,As) @u+ (n,As) @,
qzz =uURU+vRU,
Nine, user-define internal modes,

Ng1, user-define input geometric modes,

|
A ULy
n!p!
r=0,1,---, N,

Note the similarity between the deterministic full flux vector, Equation 3.19, and
the stochastic full flux vector, Equation 3.22. Note the multiplication in Equation 3.19
is replaced by the operation ® in Equation 3.22, and scalar inputs become vector
arrays. With a little practice, it becomes easy to directly write the compact PC form
of the governing equations including the proper definition of the weights (i.e., the

inner product vector). Equation 3.22 is written in a much more visually appealing
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form by using the operator, @, defined in Appendix A.1. The PC compact full flux

vector given in Equation 3.22 can be written in operator form, &, as

{p@u,0} YN, Ny Nr) 5 0}
{(p®u)®@u,n,As @ p} o LU N N1 NN ) s (Y N1 Ngr) (3.23)
{(p®@u)®@v,n,As ®p} (U NG N1 Ny Vo) 5 (VNG N ) }

{-50e u),5(p®u)® q,gn}_ VNG NG N ) 5 (Y NG N NauNo Nor) |

where

U= (n,A\s) @u+ (n,As) @v

@ =uRu+vRu.

Conversion to Primitive Variables

In the 2-D Euler formulation, the PC expansions of the primitive vector, q = q(Q)

yields,
pi(z,y)V;(&)
o | i) W)
=N q (2, y)i(€) = 3.94
q ;Q( y)Vi(€) ; o) W) (3.24)
pi(x, y)¥i(§)

Note that Equation 3.3 is used to compute the 7" component of the conservative
vector, AQ,., and the 7" component of the primitive vector, q,, is used to update the
rt" component of the conservative variable, Q,.. In order to implement this approach,

AQ, is first converted to Aq,., and then the update step is perform by q, = q, +Aq,..
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This is achieved by the following relation,

Apr = Apr
Au(U7) = p '@ lpu- (U, Na) —p ' Que Dp- Uy, , Ny N,r)

r

Do () = p @ L0 (T Nyr) = P OV D Dp - (U Ny Ny )
Ap(P2) = WT_qu@ ® Lp - (W, Ny Ny

—(v=Du® Apu - (U, N,.r)

—(v=1Dv@ Lpv - (U, N,r)

+(y = 1) Apeo(P7).

3.2.4 Implicit PC Formulation

One of the main mathematical contributions to the present work by the author is the
derivation of the stochastic Jacobian matrices necessary for implicit time integration.
In order to derive the Euler Implicit formulation, the face fluxes in Equation 3.2 are

treated as unknowns at a future time step, n + 1, which yields,

AQ
V—4+ R =0 3.25
~ T , (3.25)
where,
Nf n+1
Rn+1 = Z‘E
=1

A Newton linearization of R"™ at R" yields,

R = R" + (a—R) Aq.
dq

Substituting this result into Equation 3.25 yields,

(AQ™  (OR\" . .
Ve +(a—q) Aq=-R" (3.26)
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Using the fact that the conservative variable Q is a function of the primitive variable

qor Q = Q(q) yields,

0
oq
= M"Aq", (3.27)
where,
1 0 0 0
0 0
M= "7
v 0 p O
/2 pu opv
Substituting Equation 3.27 into Equation 3.26, a system of linear equations is ob-
tained,
V OR\"
—M" — Aq" = —-R" 3.28
[At i (6q> ] a ’ (8.28)

where Aq™ is the unknown and the update step is perform by "' = q" + Aq".
In order to obtain the PC equations from the deterministic implicit formulation
given by Equation 3.28, one simply projects Equation 3.28 onto the r** basis function

for all . This yields a system of stochastic linear equations,

X (unaw)+ 52, ()] = R (o), (3.20)

At

Furthermore, in the limit as At — oo in Equation 3.29, Newton’s method is obtained

as,

IR,
dq

where n denotes the time step, the update is given by q"*! = q" + Aq,” and

T

Ba- ()] = (R (w3, (3.30)

r

QLT Rl,r

r R T

q, = = ) R, = >
QS,T RS,T

Q4,r R4,T



37

Moreover, the term <%—1(?’f> in Equation 3.30 which is an N, x IV, (see Equation 3.24)

block matrix is given by,

9Rg IRg ORg
dqq dq, aQNq
OR1 R4 R4
9qg 9q, dan,
ORy, ORx, ORy,
dqq dq, aQNq
where each element is itself a 4 x 4 sub matrix.
For the element (%—?) we have,
0
aRl,O 8R1,0 aRl,O 8R1’0
9q1,0 0q2,0 9q3,0 0q4,0
OR2p OR20 OR20 OR2p
Oq10 Og20 0gz0  Oqapo
OR300 OR300 OR300 OR3,0
9q1,0 0920  90g30  Oqap
ORs0 OR4p ORso OR4p
Oq1,0 Og20 0gz0  Oqapo

: (3.31)

(3.32)

The residual contains linear combinations of the numerical flux vectors. Hence,

the linearization of the residual contains the Jacobian matrices of the fluxes. For

example, for the Van Leer split flux scheme, the Jacobian matrix for the » = 0 mode

contains the following elements,

+ + + +
8]-—1’0 3.7-—1’0 3.7:170 (9.7-—1’0
dpo Ouo dvo 9po

+ + + +
8]—‘2,0 6]—‘2’0 3]-—2’0 (9.7-—2’0
dpo Ouo dvg 9po

+ + + +
8]:370 8]-—3,0 8‘7-—3’0 8.7-—3’0
dpo Oug dvo 9po
OFf, 0Ff, O0Fi, 0Ff,
9po o) dvo 9po

(3.33)
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Note, that once the element of Equation (3.31) is computed (i.e., %), the other

elements can be computed in a similar fashion.

3.3 The Application of the PC Euler Equations

The problems presented here are an inviscid, steady, two-dimensional supersonic flow
of a calorically perfect gas over a wedge and an expansion corner. In these applica-
tions, the focus is on the Hermite PC, and its use in propagating uncertainty in the
two-dimensional Euler equations. The uncertainty considered herein arises due to un-
certainty in a surface definition. The geometric uncertainty was introduced through
an angle 6 described by a Gaussian PDF. The mean Wedge and Expansion angle is
10°, and the coefficient of variation is 10% (i.e., 0(¢) = 0+ o€, where § = 10°, 0 = 1,
¢ = Normal(0,1)). In order to represent geometric uncertainty, the PC expansions

are substituted into the geometric variables n,As and n,As which yields,

( nolss ) 5 ( (n:28) 4 (6) ) 3.34)
nyAs o \ (nyAs); V(&)

where 7 = 0,1,... N, modes. Typical coarse grids used for these applications are
shown in Figure 3.1. The inflow conditions were prescribed by setting the Mach-
number, M., = 3, and specifying a zero angle-of-attack(AoA). The top and outflow
surfaces were extrapolated to first-order, and a tangency boundary condition was
prescribed along the bottom surface. These boundary conditions are the same for
both the wedge and expansion grids. Note the PC Van Leer split fluxes have been
formulated and implemented in the 2-D Euler equations. Since the simulations shown
here involve supersonic flow, both the PC Full Flux and the PC Van Leer split fluxes

are used.
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Figure 3.1: 11 x 21 Compression and Expansion Grids

3.3.1 Implicit PC Boundary Conditions

In order to close the equation set, the appropriate boundary conditions need to be
applied. A tangency boundary condition has been implemented on the bottom surface
that was defined in terms of values of q at the first cell-center above the surface. Note
the bottom surface is denoted by subscript 1, and the cell-center above by subscript
2. Although many possible choices exist for a tangency boundary condition, the

following simple set is imposed,

pP1 = P2,

1 = D2,

<t
>
I
E\
|
o
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The compact PC version of this boundary condition projected onto the r* basis

function is

(pr)1 = (pr)2,

()1 = (pr)2:
()1 (T7) = (ny @ 1) - (Uny Nieor)
()1 (U2) = —(ne @ 01) - (Ungy Npr)s

where 17 = (U@ u+v® v);/ ?. Note that Ngo is the user-define boundary conditions
geometric modes, and r = 0,1,--- | Nq. The PC version of this boundary condition

is extended to an implicit PC formulation which yields,

— —
Aprl : 67",1 = Apr2 : 57‘,[7

2 o7 . 07 S,
Aur1<qu> - nyl ® _UAU/ + _A/U ' <\IjNg2»Nintv7'>’
2

0 ov
2 07 8? 7
AU7~1<\IJT> = —Inn & %AU‘F %AU ) : <‘11N92,Nmt,7“>7 (335)
where ¢ = u®@u+v®wv] and [ = 0,1,--- , Nq. Computing the terms (%) and

(%) in Equation 3.35 involves solving a linear problem of the form

4" = {(®}",

Wo(&o) Ui(o) - Unine(o) o .
0
Wo(&1) Ui(&) - Uni(&) ¢ = T:l , (3.36)
: : . . . -
\110 (é-Nint) \Ill(gNint) T ‘Iijt (&th) ANy "

Uy =7,
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where,

1/2
<q(2)‘1’0(§0) + Vi (6o) + -+ ¥, U, (50)>
To
71 1/2
S (B%0) + Ui + o+ kU (6)
T'Nint 1/2
(@P0(En,) + GUEN) + -+ 03, T, (En.n))

The modes of § can be easily found by solving the linear system of equation given

by Equation (3.36) for ¢ which yields,
7T =07 (3.37)

Differentiating Equation (3.37) with respect to u and v, one obtains,

0q 07
20 Y o
07 o7
9 _ g1 %0
ov ov

3.3.2 Deterministic Oblique Shock Wave Results

Results have been obtained from the implicit time integration scheme applied to the
stochastic Euler Equations. The stochastic 2D Euler code space marching option
was ran deterministically to steady state by setting the input and output modes to
one. The convergence history of the deterministic solution is shown in Figure 3.2.
Note that for each i-dim grid points(i.e., grid points normal to the free-stream along
the grid), the residual converges quadratically. This was an expected result for a

deterministic run that uses Newton’s method.
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Figure 3.2: Residual of the deterministic solution on the [11 x 21] Wedge Grid

3.3.3 Stochastic Oblique Shock Wave Results

Geometric uncertainty was introduced through the wedge angle 6. The mean angle
was specified to 10°, and the coefficient of variation was 10% (i.e., 8(¢) =  + o€,
where 6 = 10°, 0 = 1, £ = Normal(0,1)). For the MC results, 10,000 samples were
drawn from a Gaussian PDF. For each of these samples, the deterministic Euler code
was executed, and the results were stored. The spectral results shown here are from
a first-order PC simulation. The convergence history of the first-order PC is shown
in Figure 3.3. Convergence was measured in terms of the Ly norm of the individual
modes and the Ly norm over all modes. Note that quadratic convergence was obtained
for each i-dim grid points for all modes and individual modes as shown in Figure 3.3.
Figure 3.4 shows contours of the mean and standard deviation of density from the
PC and MC results. Comparisons of first-order PC results show good agreement
with the MC simulations. Furthermore, the implicit PC scheme required roughly two

orders-of-magnitude less CPU time than the MC method to achieve its result.
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Figure 3.3: First-order PC Residuals on the [11 x 21] Wedge Grid

3.3.4 Deterministic Expansion Wave Results

The flow over an Expansion corner was also ran deterministically to steady state by
setting the input and output modes to one in the stochastic PC Euler code. For
this case, the implicit time marching option is used. The convergence history of the
deterministic solution is shown in Figures 3.5. Note that quadratic convergence was

obtained globally for the time marching scheme. This was an expected result for a

deterministic run that uses Newton’s method.

3.3.5 Stochastic Expansion Wave Results

Geometric uncertainty was introduced through the expansion angle #. The mean angle
was specified to 10°, and the coefficient of variation was 10% (i.e., 8(¢) =  + o€,
where § = 10°, ¢ = 1, £ = Normal(0,1)). For the MC results, 10,000 samples

were drawn from a Gaussian PDF. For each of these samples, the deterministic Euler
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Figure 3.4: Mean Density and Standard Deviation contours from the first-order PC
simulations and 10,000 MC on the [11 x 21] Wedge Grid
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Figure 3.5: Residual of the deterministic solution on the [11 x 21] Expansion Grid

code was executed, and the results were stored. The spectral results shown here are
from the first-order PC simulations. The convergence history of the first-order PC
is shown in Figure 3.6. Convergence was measured in terms of the Ly norm of the
individual modes and the L, norm over all modes. Note that quadratic convergence
was obtained globally. This was an expected result for the stochastic code. Figure 3.7
shows contours of the mean and standard deviation of density from the first-order
PC and MC results. Comparisons of the first-order PC results show good agreement
with the MC simulations. Furthermore, the implicit PC scheme required roughly two

orders-of-magnitude less CPU time than the MC method to achieve its result.
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Figure 3.6: First-Order PC Residuals on the [11 x 21] Expansion Grid

3.3.6 Cosine Shaped Airfoil

The problem presented here is an inviscid, steady, two-dimensional supersonic flow of
a calorically perfect gas over a cosine shaped airfoil. In this application, the focus is on
the Hermite PC, and its use in propagating uncertainty in the two-dimensional Euler
equations. The uncertainty considered herein arises due to uncertainty in surface
definition. The geometric uncertainty was introduced through the thickness to chord
ratio (t/c) described by a Gaussian PDF. The mean ratio t/c was 10% and the
coefficient of variation was 1% (i.e., t/c(€) = t/c+ o &, where t/c = 0.1, o = 0.001,
¢ = Normal(0,1)). The PC geometric variables (n,As)* and (n,As)*, given by
Equation 3.34, is used to represent geometric uncertainty. The grid used in this case
is shown in Figure 3.8. The inflow conditions were prescribed by setting the Mach-
number, M., = 3, at zero AoA. The top and outflow surfaces were extrapolated to
first-order. A symmetry boundary condition was prescribed along the surface of the

airfoil. Note the PC implicit boundary condition, formulated in section 3.3.1, is also
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Figure 3.7: Mean Density and Standard Deviation contours from the first-order PC

simulations and 10,000 MC on the [11 x 21] Expansion Grid
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Figure 3.8: The Cosine Shaped Airfoil [65 x 65] Grid

implemented in this application. Since the simulations shown here involves supersonic

flow, both the PC Full Flux and the PC Van Leer split fluxes are used.

3.3.7 Deterministic Results

The stochastic 2D Euler code implicit space marching option was ran deterministi-
cally by setting the input and output modes to one. The convergence history of the
deterministic solution is shown in Figure 3.9. Note that for each i-dim grid points

along the grid, the residual converges quadratically.

3.3.8 Stochastic Results

Geometric uncertainty was introduced through ¢/c. The mean ratio t/_c was specified
to be 10%, and the coefficient of variation was 1%. The spectral results shown here
are from the first-order PC simulations. Figure 3.10 shows contours of the mean

and standard deviation of pressure from the first-order PC results. The convergence
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Figure 3.9: The Deterministic Residual on the Cosine Shaped Airfoil [65 x 65] Grid
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Figure 3.10: The First-Order PC Simulations on the Cosine Shaped Airfoil [65 x 65]
Grid

history of the first-order PC simulations is shown in Figure 3.11. Convergence was
measured in terms of the Lo-norm of the individual modes, and the Ly-norm over
all modes. Note that quadratic convergence was obtained for each i-dim grid points
for all modes and individual modes. Figure 3.12 illustrates the pressure coefficient
along with the 95% confidence interval(CI) from the first-order PC results and exact
solution obtained from compressible flow theory. Note the exact pressure coefficient
is not in close agreement with the mean pressure coefficient. This discrepancy is due

to lack of grid points near the leading edge.
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Figure 3.11: The First-Order PC Residuals on the Cosine Shaped Airfoil [65 x 65]
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Figure 3.12: The First-Order PC Pressure Coefficient on the Cosine Shaped Airfoil
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Chapter 4

Non-Intrusive Approach:

Development and Implementation

4.1 Introduction

In chapter 3, the Intrusive approach was applied directly to the Euler Equations, and
it required modifications in the solver algorithm. In this approach, all dependent
variables and random parameters in the Euler equations were replaced with the PC
expansions. The resulting equations were then projected onto the k' basis by using
the definition of the inner product given by Equation 2.15. These projected equations
resulted in P + 1 (see Equation 2.13) additional deterministic equations, which were
solved by the same conventional numerical technique applied to the original deter-
ministic system. Although straightforward in theory, it was relatively difficult, and
time consuming to implement. Hence, it is easily seen that formulating a stochastic
CFED code (using the Intrusive approach) capable of handling 3-D, viscous, turbulent
flow, around realistic aerospace vehicles would require an enormous modification of an

existing CFD deterministic code. However, in the so called Non-Intrusive approach,
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no modification to a deterministic code is required. In this new approach, the de-
terministic code is called as a black box, and uncertainty is modeled and propagated
solely by the PC expansions. In fact, the motivation in developing Non-Intrusive
PC(NIPC) methods stems from the need to approximate the PC coefficients of the

CFD solution without making any modification to the deterministic code.

4.2 Development and Implementation

The NIPC approach was used by Walters [82] to approximate the PC coefficients
of the metric terms of a stochastic heat transfer problem with input geometric un-
certainty. These input metric PC coefficients were required as an input to the In-
trusive PC method. Moreover, Walters [83] used the same approach to determine
optimum lift-to-drag ratio for a cosine-shaped airfoil as function of AoA. Similarly,
Isukapalli [47] developed a Non-Intrusive method known as the Stochastic Response
Surface Method(SRSM) for uncertainty propagation. In the NIPC approach, only
the solution, o*(z,v, 2, t; 5), is expanded using the appropriate PC basis functions.
In this chapter, the focus is on the development and implementation of three NIPC
methods based on (1) the Galerkin method, (2) the Collocation method, and (3) the

Collocation method coupled with sensitivity analysis. These methods are discussed

below.

4.2.1 The Galerkin method

In this method, the solution a*(z, y, 2, t; 5) is projected onto the k' basis by using the
definition of the inner product(see Equation 2.15) and the property of orthogonality

given by,
f - <04*($7yu27t,g)7‘11k(g)>
Oék<l’,y,Z, )_ <\I;Z(_>> .

(4.1)
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In Equation 4.1, the denominator of the PC coefficients is independent of the response

*

a*, and can therefore be pre-computed. The integral of the inner product in the

numerator can be estimated using Gauss quadrature by,

m - ULy s T, ) i
ap(x,y, z,t) = Z Za(m,y,z,t;xml,---,xmn) %) mei,
mi=1  mu=1 i=1
(4.2)
where (2,,,, wy,,) are the integration points and weights along each stochastic direc-
tion, and m is the total number of integration points used in a single dimension. The
quadrature in Equation 4.2 is exact when the integrand is a polynomial of degree of
(2m — 1) or less. Thus, the PC coefficients can be exactly estimated if the solution
is expanded by a PC of degree less than or equal to (2m — 1)/2. Note the solution
a*(x,y, 2, t; 5) assumes the functional form of the PC expansions. However, the degree
of departure of the PC expansions depends on the accuracy of the PC coefficients.
Although Gauss quadrature is a very efficient method for numerical integration, for
practical purposes, it is limited to cases with a few number of random variables. For
example, a problem with n number of random variables, the total number of deter-

ministic solutions Ny required for an exact estimation is Ny > (2p — 1)", where p is

the order of the chaos.

4.2.2 The Collocation Method

The first step in the formulation of this method is to write down the PC expansions

of the solution given by,

—

a’(z,y, 2,68 =

—

P
ai(xa Y, z, t)llj< )
=0

(ntp)!
nlp!

where P = — 1, n is the number of random variables, and p the order of the
chaos. The second step is to select P+1 collocation points of the random variables and

evaluate the code for each of these sample values. The deterministic modal response
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a;(x,y, z,t) is then solved using the computed sample solutions a*(:c,y,z,t;f_;) for

each of the pre-selected collocation points 5; by,

\IIO(&;) \I,I(gg)) \DP(&;) ao(x,y,z,t) a*($7yaz7t7§))
\IIO(51> \Ijl(gl) \IIP(é) O(1<I,y,2,t) _ a*<x>y7z7t;gl) (4 3)

_\IIO(gP) qjl(gp) T \IIP(EP)_ aP(x7y7zat) a*(xhy, Z7t;gP)
o = [Up] '’ (&). (4.4)

The collocation points are selected based on the Orthogonal Collocation Method(OCM)
suggested by Villadsen and Michelsen [79]. The orthogonal collocation points corre-
spond to the roots of the polynomial of one degree higher than the order of the PC
expansion. For the special case of one-dimensional random variable problem, OCM
gives the same result as the Galerkin method [79], and is regarded as the optimal
selection. For multi-dimensional random variable problems, the collocation points
are selected such that the overall distribution is symmetric with respect to the origin,
and takes on values of zero or one of the roots of the higher order polynomial. Al-
though this method is not unique for the solution of PC coefficients of multi-random
variables, the behavior of the PC coefficients is captured reasonably well in regions
of high probability. For example, the exclusion of the origin as a collocation point
could potentially lead to a poor estimation when the origin corresponds to the region
of highest probability. Furthermore, singularities can be avoided in Equation 4.3, as

the collocation points are selected at the roots of the higher order polynomials.
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4.2.3 The Collocation Method coupled with Sensitivity Anal-
ysis

The first step in the formulation of this method is to write down the PC expansions
of the solution given by,

P

of(x,y, 2, 4 6) = Zai(:v,y,z,t)‘ll(f). (4.5)

i=0
The second step is to differentiate Equation 4.5 with respect to Z;(&;) using the chain
rule which yields,

—

da(z,y, z,t;€) 0Z;i(&) | P@gg ; ov;(§)
{ o }{ L }—Z N

where Z;(&;) are input random variables to a CFD model. Consider two input random

variables to a CFD model given by,
Z1(&) = 1 + o1&y

Z5(&2) = pia + 026>

where & and & are two independent identically distributed normal random variables.

The terms a%—éfi) are then easily computed as,

0Z,(&1)
&1

07Z5(&2)

= 02

0

The third step is to select collocation points of the random variables and eval-

:O’l

uate the code for each of these sample values. The deterministic modal response

a;(x,y, z,t) is then solved using the computed sample solutions a*(x,y, z,t;gj) and



57

%‘%’;3@ for each of the pre-selected collocation points by,
Uo(&o) Wil&o) -+ Wp(&o) | [0 a* (&)
0Wo(fo) o) ... 9¥p(&) a; da* (&) 92,
851 861 851 8Z1 6{1
: : : Q2 '
MWo(d) () ... 9¥p() : 9a* (§0) 02n
Oén Oén n 0Zn  On
Po(&) Wi(&) - Vp(&) : a* (&)
Mo(&)  ow(&) . 9¥p(E) : da*(&1) 971
0&1 0&1 961 ’ 071  0&1
Mo(&)  ow(&) . 9¥p(E) : - 9a*(£1) 92, (4.7)
Oén Oén In : 0Zn  On
Yo(én) Wiléw) -+ Vp(En)| | a*(&w)
O%o(En) OWi(én) .. 9Vp(En) : da* (€n) 921
061 061 231 : 0Z1 0&
OWo(En) OWi(€n) .. 9Vp(En) 0 (€n) 0Zn
L On On 0n A ap 0Zn  0&n
— -1 —
ai(x,y, z,t) = [\pr( )} a(x,y, 2,6 €)
where N = %. Note that % is chosen such that N is always an integer value.

Furthermore, [\If p(é')} is a squared matrix when the number of deterministic solution
Ny is equal to N. This method reduces the deterministic black-box evaluations by
a factor of (n + 1). In addition, the collocation points are selected based on the
OCM method described in Section 4.2.2. Note the stochastic linear system given by
Equations 4.7 is inherently unstable due to the presence of sensitivity derivatives.
When N; > N, regression analysis is applied to Equation 4.7 because it provides a
robust means of estimating the PC coefficients. This is because the influence of each

collocation point is moderated by all other collocation points.
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4.3 The Application of NIPC methods to a Super-

sonic Wedge and Expansion Corner

To test the performance of the NIPC methods, the two classical fluid dynamic prob-
lems presented in Chapter 3 are repeated. The problems presented here are an invis-
cid, steady, two-dimensional supersonic flow of a calorically perfect gas over a wedge
and an expansion corner. The uncertainty considered herein arises due to uncer-
tainty in free-stream AoA. The free-stream AoA uncertainty was introduced through
an angle, «, described by a Gaussian PDF.

In these two test cases, the focus is on the Hermite PC, and its use in propa-
gating uncertainty using the Collocation Method coupled with sensitivity derivatives
denoted as the gradient-based NIPC(GBNIPC) method. The term %ﬁz@ (e.g.,
see Equation 4.7) used in the GBNIPC method is computed by the complex FUN3D
flow solver at NASA Langley Research Center. The complex FUN3D code is a tetra-
hedral node-centered upwind solver which has the capability of computing flow field
variables sensitivity derivatives in the computational domain by using the Complex
Variable formulation described in Section 2.2.1. Note the output sensitivity deriva-
tives of the flow field variables are second order accurate.

In these two test cases, the GBNIPC method is compared to the statistics ob-
tained with MC simulations described in Walters[46]. These MC simulations enable
an assessment of the accuracy of the GBNIPC method for the selected problems.
Note that performing a large number of MC simulations would be beyond the reach
of current computational power, even with high performance computers, for many

realistic aerodynamic problems that required the solution of complex flow fields.
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Figure 4.1: An unstructured grid with 3265 nodes. The wedge angle is 10°. The

Wedge L.E. is 0.05 units

4.3.1 Stochastic Oblique Shock Wave Results

Uncertainty was introduced through the free-stream AoA by,

AoA(€) = AoA + ¢

where the mean AoA is 0°, and ¢ is a normally distributed random variable(§

NJ0,1]). The effect of free-stream uncertainty AoA is modeled and propagated using
the GBNIPC and the MC methods. The deterministic complex FUN3D code is

called as a black box by the GBNIPC and MC methods.

The deterministic problem was solved numerically using the complex FUN3D

code. The computations were performed for an inviscid, compressible flow on a

unstructured wedge grid shown in Figure 4.1. Note the inviscid fluxes on the node

cell-faces were calculated using Roe flux difference splitting. The boundary conditions

for this problem were set as follows: all flow variables were kept fixed at their free-

stream values at the inflow boundary. The free-stream Mach number was chosen
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as My, = 3.0. For the far-field (top) and outflow surfaces, all flow variables were
determined by a first-order extrapolation from the interior cells. An inviscid boundary
condition was prescribed along the bottom surface.

In the MC method, 10 simulations were generated using 10® samples from the
AoA(&) PDF. For this case, it takes approximately 8.8 hours(i.e., 32 seconds per MC
run to drive the residual to machine zero) to compute 1,000 MC solutions, and was
sufficient enough to capture the statistics of the output distribution. In the GBNIPC
method, a 5"-order PC expansion was chosen to model the uncertainty in the free-
stream AoA. The input random variable, AoA(§), was sampled from a normal PDF
at points {—3.32, —1.88,—0.616,0.616, 1.88,3.32}. These sample points corresponds
to the roots of a 6'-order Hermite polynomial. Recall that for the GBNIPC method,
the number of sample points are reduced by a factor of (n + 1) or 2 for this case.
Thus, the collocation points {op = {—0.616,0,0.616} were selected, and deterministic
solutions were obtained at these points. Note the selected collocation points includes
zero although the roots of a 6t"-order Hermite polynomial does not contain this root.
This is because the OCM method requires the selection of the zero collocation point
as described in Section 4.2.2.

Contours of the mean and standard deviation of pressure (P/Pref) obtained
via the GBNIPC and MC methods are illustrated in Figure 4.2. Both methods are
in excellent agreement. This observation confirms the convergence of the GBNIPC
method for a 5""-order PC expansion. To quantify the convergence of the mean and
standard deviation of the GBNIPC method, one point was chosen at the exit plane on
the wall (z = 1.0,z = 0.296394) downstream of the shock depicted in Figure 4.2. At
this point, the GBNIPC and the MC estimation of the mean and standard deviation
and their associated confidence intervals are presented in Table 4.1. As shown, the
GBNIPC estimation of the mean and standard deviation fall within the 95% CI.

Although not shown here, a first-order was sufficient to estimate the statistics at the
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Figure 4.2: Comparison of the mean and standard deviat.ion of (P/Pref) between
GBNIPC and MC Methods. (a)Mean P/P,.s obtained‘w? GBNIPC method. . (bc)1
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Table 4.1: The mean and standard deviation of (P/P,.s) obtained with GBNIPC
and MC methods at location (z = 1.0,z = 0.296394) for the wedge problem. The
95% confidence intervals for the standard deviations(StD) are calculated from the
MC simulations using the Bootstrap method.

GBNIPC(1%order) 1000 MC 95% CI
Mean 2.05249 2.05599 [2.04764, 2.0644]
StD 0.135977 0.135514 [0.12982, 0.14108]

exit point. Note the 95% CI was constructed via the bootstrap method using the

1000 MC simulations. Here, 500 bootstrap samples were run for this case.

4.3.2 Stochastic Expansion Wave Results

As in the stochastic oblique shock problem, uncertainty was introduced through the

free-stream AoA described by,
AoA(§) = AoA+ ¢

where the mean AoA is 0°, and ¢ is a normally distributed random variable(¢ =
NJ0,1]). The effect of free-stream uncertainty AoA(¢) is modeled and propagated
using the GBNIPC and the MC methods. The deterministic complex FUN3D code
is called as a black box by the GBNIPC and MC methods.

The deterministic problem was solved numerically using the complex FUN3D
code. The computations were performed for an inviscid, compressible flow on a
unstructured expansion grid shown in Figure 4.3. Note the inviscid fluxes on the node
cell-faces were calculated using Roe flux difference splitting. The same boundary
conditions described for the stochastic oblique shock problem are use in this case
to find the steady-state solutions. The free-stream Mach number was chosen as

M = 3.0.
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Figure 4.3: An unstructured grid with 4110 nodes. The deflection angle is 10°. The
Expansion L.E. is 0.05 units

In the MC method, 10® solutions were generated using 10° samples from the
AoA(§) PDF. For this case, it takes approximately 9.4 hours(i.e., 34 seconds per
MC run to drive the residual to machine zero) to compute 1,000 MC solutions, and
was sufficient enough to capture the statistics of the output distribution. In the
GBNIPC method, a 5"-order PC expansion was chosen to model the uncertainty
in the free-stream AoA. The input random variable, AoA(&), was sampled from a
Gaussian PDF, and deterministic solutions were obtained at the collocation points
¢op = {—0.616,0,0.616}.

Contours of the mean and standard deviation of pressure (P/Pref) between GB-
NIPC and MC methods are illustrated in Figure 4.4. Both methods are in excellent
agreement. This observation confirms the convergence of the GBNIPC method for a
5%-order PC. Across the expansion wave, all cases show a smooth pressure drop. As

in the oblique shock problem, one location (x = 1.0,z = 0.244897) is chosen in the
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Table 4.2: The mean and standard deviation of (P/P,.s) obtained with GBNIPC
and MC methods at location (x = 1.0,z = 0.244897) for the expansion case. The
95% confidence intervals for the standard deviations(StD) are calculated from the
MC simulations using the Bootstrap method.

GBNIPC(5"order) 1000 MC 95% CI
Mean 0.742916 0.742865 [0.74054, 0.74529]
StD 0.0344393 0.0342788 [0.03263, 0.03570]

flow field to compare the statistics of the GBNIPC and MC methods quantitatively.
This location is a point on the wall exit downstream of the expansion fan depicted in
Figure 4.4. At this point, the GBNIPC and the MC estimation of the mean and stan-
dard deviation and their associated confidence intervals are presented in Table 4.2.
As shown, the GBNIPC estimation of the mean and standard deviation fall within
the 95% CI. Although not shown here, the GBNIPC estimates do not fall within the
95% CI for an order-chaos lower than 4'-order. This observation is an indication of
the additional errors introduced in the GBNIPC method due to the presence of the
expansion wave. As a consequence, the expansion region required a high order-chaos
to resolve the PC coefficients within the convergence range. Note the 95% CI was
constructed via the bootstrap method using the 1000 MC simulations. Here, 500

bootstrap samples were run for this case.

4.4 The Application of NIPC methods to the Onera-
M6-Wing Case

The benchmark problem of interest is a compressible, transonic, invisicid flow around
the Onera-M6-Wing. The computational domain is bounded by a rectangular box

defined by —6.5 <2 <6.5m,0<y <4 m, and —6.5 < z < 6.5 m, in aerodynamic
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coordinates relative to a semi-span length of 1 m. A typical surface and symmetry
plane mesh are shown in Figure 4.5.

The uncertainty considered herein arises due to uncertainty in the free-stream
AoA, and the free-stream Mach number. The focus is on the Hermite PC, and its use
in propagating uncertainty using (1) the Gauss-Hermite method, (2) the Collocation
method, and (3) the GBNIPC method described in Sections 4.2.1, 4.2.2, and 4.2.3,
respectively.

The output statistics of the NIPC methods are compare to experimental mea-
surements performed by Schmitt and Charpin [72]. In their technical report, they
conducted measurements of pressure distributions at several span-wise sections and
aerodynamic coefficients of the Onera-M6-Wing for several test conditions. These
measurements were obtained in the Onera S2MA wind tunnel at Mach numbers 0.7,
0.84, 0.88, and 0.92 for angles-of-attack from 0° to 6° degrees and a Reynolds number
of about 12 million. The level of uncertainty of the pressure coefficient measurements

for Mach= 0.84 was reported to be AC, = £0.02.

4.4.1 Grid Convergence Studies for the Onera-M6-Wing Case

Since the level of uncertainty in numerical simulations is dependent upon grid quality,
it is essential to verify grid convergence. Furthermore, a lack of grid convergence in a
numerical solution contains large discretization errors in the discrete domain of space
and time in the governing flow equations and other physical models. In the CFD
community, grid convergence is achieved when the numerical solution becomes less
sensitive to the grid spacing as the grid is refined.

However, the current practices in grid convergence studies in the field of external
aerodynamics are flawed. This observation is evident in the drag prediction work-

shops(DPWs, [2]). For example, the results of the DPWs participants revealed an
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Figure 4.5: A Typical Onera-M6-Wing mesh

apparent lack of grid convergence, which resulted in larger than desired scatter in to-
tal drag. The necessary condition to properly establish grid convergence for regular-
structured grids was first introduced by Salas [71], and is extended to unstructured
grids in this chapter. This necessary condition requires that the aspect grid ratio,y,

be constant over subsequent grid level refinement. Mathematically, this is expressed

as

hyk hz k
= == k=1,23,. 4.8
hx’k, hx7k ) fOT ) ) ) b ( )

where h is the grid size, k is the mesh sequence level, and x,y, z are the directional

coordinates. In the DPWs, the convergence rate, p, is computed for all cases by

_ M) (%) (4.9)

11'1(7”12)
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where,
€12 = fl - f2
€23 = f2 - f3
N, (1/D)
T2 = F
2
and,

f1, CFD solution at the fine level
fa2, CFD solution at the medium level
f3, CFD solution at the coarse level
N7, number of nodes at the fine level
Ny, number of nodes at the medium level
D, dimensionality of the problem.
Note that Equation 4.9 is valid for a constant grid aspect ratio. The equation to

find the convergence rate p for a grid aspect ratio that is not constant is given by,
(rfy = 1) (r33 — 1) €12 + (r3 — 1)ers — (rfy — 1)eaz = 0 (4.10)

and can be solved for p by implementing Newton’s method. Note that Equation 4.10

reduces to Equation 4.9 for a constant grid aspect ratio(ris = 793).

4.4.2 Deterministic Onera-M6-Wing Results

The deterministic problem was solved numerically using the complex FFUN3D code.
The boundary conditions for this problem were set as follows: all flow variables were
kept fixed at their upstream values at the inflow boundary. The upstream Mach
number and AoA were set to Mach = 0.84 and a = 3.06°. For the far-field (top)
and outflow surfaces, the flow variables were obtained by the 1-d Riemann invariants.

An inviscid boundary condition was prescribed along the surface of the wing. Note



69

Table 4.3: Grid Level Size

Level Number Number
of Nodes of Cells
Coarse 34,406 198,367
Medium 110,521 647,447
Fine 235,458 1,390,199
Super-Fine 710,958 4,229,826

the inviscid fluxes on the node cell-faces were calculated using Roe flux difference
splitting.

The grids used in the simulations are shown in Table 4.3 and Figure 4.6. These
grids were generated using the tetrahedral mesh generation package VGRID. Note
the grids were sequenced uniformly from coarse to fine using the Element Scaling
Software of NASA LaRC.

Figure 4.7 shows the discretization and iterative errors of the total lift and drag
coefficients. Note the convergence rate for the C'p is slow to converge, but nevertheless
the solutions are monotonic and in the asymptotic region. Using Equation 4.10, the
convergence rate is found to be p = 1.7 for the lift coefficient, and p = 0.34 for the

drag coefficient. Note the refinement ratio in Figure 4.7 is define as,
(h/ho)* = (No/N)*/* (4.11)

where N is the number of nodes at a given level, and Ny is the number of nodes to
normalize h. In all deterministic cases, Ny = 235,458. The deterministic pressure

contours are shown in Figure 4.8.
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4.4.3 Stochastic Onera-M6-Wing Results

The stochastic Onera-M6-Wing problem was formulated by introducing uncertainty

through the AoA and the Mach number(M) given by,
AoA(&)) = AoA + 0,6

M (&) =M + 026,

where & and & are two normally distributed independent random variables(§; =
NJ[0,1], & = NJ0,1]). The mean AoA was 3.06°, and the coefficient of variation was
1% (i.e., oy = 0.0306). The mean Mach number M was 0.84, and the coefficient
of variation was 0.5% (i.e., oo = 0.0042). In this application, the focus is on the
Hermite PC, and its use in propagating uncertainty using the NIPC methods. The
deterministic complex FUN3D code is called as a black-box by the NIPC methods.
All deterministic runs use the fine grid shown in Figure 4.6, where the CPU time for
each deterministic run is approximately 1.5 hours.

Figures 4.9 and 4.10 illustrate the modes of the pressure coefficient for a 4*-
order PC at sections y/b = 0.2 and y/b = 0.65, respectively. For the Gauss-Hermite
method, seven integration points were used along each stochastic direction, which
required (2p—1)" = 49 deterministic runs for an exact estimation. For the Collocation
method, a 4*"-order chaos with two random dimensions required P 4 1 = ("nT—Ii)! =15
deterministic runs. For the GBNIPC method, the required number of deterministic

2P+ _ 1.

runs was reduced to
n+1

The Collocation and GBNIPC methods slightly over-predict the second and third-
order modes at the shock location compared to the Gauss-Hermite method at sections
y/b = 0.2 and y/b = 0.65. However, the zeroth and first-order modes obtained from
the NIPC methods are in good agreement as shown in Figures 4.9 and 4.10. These
observations are an indication of the additional errors introduced in the GBNIPC and

the Collocation methods at the shock location downstream of the leading edge. Note
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the level of accuracy of the PC coefficients can be increased by running higher order-
chaos for the NIPC methods. However, this is not necessary for this case. This is
because the modes of the pressure coefficients in regions of high probability(i.e., lower-
order-modes) are sufficiently accurate to compute the mean and standard deviation.
Note that these statistical parameters(i.e., the mean and standard deviation) are of
paramount interest to the aerodynamicist.

Figures 4.11 and 4.12 illustrate the mean pressure coefficient in concert with its
95% CI compared with experimental data at span-wise sections y/b = 0.2 and y/b =
0.65. Note the 95% confidence intervals were constructed via the bootstrap method
using the PC coefficients obtained via the GBNIPC method. Here, 500 bootstrap
samples were run. At sections y/b = 0.2 and y/b = 0.65, the uncertainty band
of the pressure coefficient is too narrow to account for the observed discrepancy
between prediction and experiment. This indicates that the level of uncertainty in
the two input random variables AoA(&) and Mach(§) do not account for the observed
discrepancies between prediction and experiment. Furthermore, the mean pressure
coefficient over-predicts the experimental data at the shock locations of the wing as
shown in Figures 4.11 and 4.12. The failure of the CFD model to capture the shock
locations accurately, also indicates that the observed discrepancies are likely due to

the CFD model uncertainty.
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Figure 4.9: The PC modes of the Pressure Coefficient(C),) at Station y/b = 0.2, for
input random variables, AoA = 3.06, CoV = 1% and M = 0.84, CoV = 0.5%
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Figure 4.10: The PC modes of the Pressure Coefficient(C),) at Station y/b = 0.65, for
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Chapter 5

Turbulence Model Uncertainty
Analysis

5.1 Introduction and Background

The uncertainty of turbulence modeling is manifested in the large variety of available
models in the literature. These range from Prandtl’s zero-equation mixing length
model [40] to more complex detailed turbulence models. Uncertainty in the appli-
cation of turbulence models arises not only due to uncertainty in model inputs or
parameters, but also due to uncertainty in model formulation. As discussed in Chap-
ter 1, uncertainty in model formulation arises for several reasons: (1) Alternative sets
of scientific assumptions of a phenomena under study exits, (2) the representation of
a phenomena under study is simplified for purposes of mathematical tractability, (3)
the inappropriate selection of spatial and temporal resolution in the application of
numerical methods, and (4) the inappropriate selection of model boundaries in the
application of numerical methods. Examples of sources of model uncertainty in CFD

models are presented in Table 1.1.
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The limits of applicability of turbulence models can readily be accessed by per-
forming uncertainty analysis. This information not only gives an assessment to the
importance and contribution of each source of uncertainty, but also an indication to
where the available computational resources should be focused. Moreover, performing
uncertainty analysis identifies the robustness of the model assumptions, formulation,
and its parameters.

A widely known approach for performing turbulence model uncertainty analysis
is to run a number of simulations with a variety of turbulence models, and assess
how the modeling effects the results. The procedure described in Isukapalli [47] is
typically followed: (1) Evaluate available alternative models ranging from simplified
models to more complex detailed models, (2) If the results of low detailed models agree
closely with the those of high detailed models, the low detailed models are preferable
because they generally required fewer computational resources, and (3) construct un-
certainty bounds based on results from different model formulation. There has also
been some work perform on turbulence model uncertainty. For example, Boggaard[48]
and Godfrey[31] used the SEM to rank the relative contributions of the closure coef-
ficients of turbulence models to the output for a variety of applications.

However, the main drawback of these methods is that the uncertainty in model
formulation of one specific model is still not estimated. Furthermore, this approach
cannot quantify or identify the sources of model uncertainty that are causing the CFD
simulation to differ from their true or exact value. Because of these main limitations,
the development of alternative methods is presented in this chapter.

The relevant background information on turbulence modeling is presented. This
is followed by a description of the one-equation Spalart-Allmaras(S-A) turbulence
model [74]. A methodology for quantifying model uncertainty for the S-A turbulence

model is developed, and demonstrated on the Onera-M6-Wing case.
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5.2 Background Review on Turbulence Modeling

In practice, most flows of engineering interest are turbulent. For example, flow past
rockets, airplanes, automobiles, and internal combustion engines occur well above
the critical Reynolds number at which laminar flow exists. Moreover, high Reynolds
number turbulent flow involved a wide range of fluctuating velocity scales or eddies
that must be resolved. These scales range from the smallest eddies to the largest
eddies which are also known as the microstructure and macrostructure scales(see
Wilcox [90]), respectively. Since the microstructure scales are much larger than the
molecular dimensions, turbulence is a continuum phenomenon. On the other extreme,
the macrostructure scales have the largest dimensions, and are comparable to the solid
body about which the flow is being computed. Note that the turbulence phenomenon
can be thought as a spectrum of eddies of all sizes in between the two extremes.
Furthermore, this spectrum increases rapidly as the Reynolds number increases.

To compute an accurate simulation of a turbulent flow, the entire spectrum of
active scales must be captured. Since turbulence is a continuum, consequently, the
Navier-Stokes, energy and mass-conservation equations captures all of the physics of
turbulent fluid motion. However, computing the Navier-Stokes equations directly,
exact to the smallest scales, requires too much computational efforts even with cur-
rent state-of-art computing power. Since the computational demands for solving
the exact turbulent-flow equations are so intensive, the Reynolds-Average-Navier-
Stokes(RANS) equations are typically implemented in order to reduce computational
efforts. Note that the RANS equations introduces additional terms that need to be
modeled in order to achieve a closure for the unknowns. Information in the small-
scale turbulent fluctuation(i.e., Kolmogorov-scales,see Wilcox [91]) is lost due to the
averaging procedure in concert with the closure problem implemented in the RANS

equations. The RANS equations are closed by making choices for empirical constants,
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and incorporating dimensional analysis of the exact behavior of the turbulence quan-
tities as the solid wall of a rigid body is approached(see Hinze [40]).

In the RANS modeling approach, time or mass averaging is implemented in the
mass-conservation, momentum, and energy equations to account for turbulent fluctu-
ations. The dependent variables of these equations are split into a mean and a fluctu-
ating component known as the Reynolds decomposition. For example, the Reynolds

decomposition for the components of velocity is:
wi(x,y, 2,t) = i (z,y, 2) + uy(z,y,2,t)  with i=1,2,3
For other quantities like density, pressure, and energy, the Reynolds decomposition
is:
O(w,y,2,1) = d(r,y,2) + ¢ (2,, 2,1).
Upon substituting the Reynolds decomposition in the continuity, momentum, and

energy equations and using the summation convention, the resulting RANS equations

are written as follows:

95 o~
5+ aii (pu;) =0

e, o N o
G+ e (PUity +16;5) = 50 (7) + 5 (‘P“i “j) (5.1)

ey | 0 (=x~ om0 ) — O (=) _ 9T
o T ag; (peou2 + pu; + peoui) = e (T3;4;5) o

where
eo=C,T+1/20; 0 +1/2u)u)

p=pRT

—~

d;; is the delta function, the bar(-) denotes time average, and the tilde(-) denotes mass
or Favre[55] average. The additional terms that appears in Equation 5.1(i.e., —ﬁu'i/u;')
are called the Reynolds stresses and represent the effects of turbulent fluctuations.

Furthermore, these stresses must be modeled in order to close the RANS equations.
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The closure model employs the Boussinesq hypothesis[40] for all turbulence models

to relate the Reynolds stresses to the mean velocity gradients given by,
- ou; Ou; 2. Ouy
—pu v = + L 25— 5.2
Uity = e <8xj oxr; 3 ]3xk> (5:2)
where p; is the turbulent eddy viscosity. According to the Boussinesq hypothesis,

the Reynolds stresses are assumed to behave in analogy to the laminar viscous dif-
fusion terms, and the turbulent eddy viscosity is assumed to be an isotropic scalar
quantity(i.e., the eddy viscosity is invariant with respect to direction).

These assumptions, however, are not strictly true, and consequently give rise to
turbulence model uncertainty. Uncertainty in turbulence model formulation, which
assumes the Boussinesq hypothesis, are addressed in the context of the S-A turbulence
model. This is the only one-equation turbulence model that will be treated, and is

discussed in the next section.

5.2.1 S-A Turbulence Model

The S-A turbulence model [74] is based on a postulated transport equation comprised
of terms modeling convection, diffusion, production, and dissipation of turbulence
eddy viscosity. It is a relatively simple model that has been optimized for aerodynamic
applications, most notably for flow past a wing. One of the main advantage of the S-
A model is the simplicity in imposing the free-stream and wall boundary conditions.
In a near wall-region, this model depends on the distance to the closest wall d to
reproduce the viscous effects in the laminar-sublayer. Far from the wall, the viscous
effects becomes negligible. The transport equation for the modified turbulent viscosity

v can be written using the summation convention as follows,

~ o [(u+pv) 0w Cp [ O7\? 7\’
D(pe) _ 05 wrp P L2 _,C v
bt Ll +8xj [ o Ox; i 0z; pCurtu d
Production Diffusion Dissipation

(5.3)
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Table 5.1: Constants for the S-A model

Cn 7.1

Ch 0.1355

Cho 0.622

Cwl Cb1//<62 + (1 + Cbg) /U
Cw2 | 0.3

Cos | 2.0

o 0.66667

K 0.41

where,
_ 3
_ e = —X__ = X =7
S:S+va2a Jo=1- T+xfo1? for = X34+C3y 0 X=0
- _ 1 [ Ou; an
S = /29, Qij—§<axj_a_xi)
1/6
_ 1+CPs = 6 = o2
fw—g[g6+05;3] ) g—r—{—C’wz (T —’I“), r= Sr2d?

and the turbulent eddy viscosity is u; = pvf,1. The term on the left hand side of
Equation 5.3 represents the rate of increase and convection of turbulent viscosity.
The first term on the right hand side of Equation 5.3 represents the production of
turbulent viscosity. The diffusion term represents the transport of both molecular and
turbulent viscosity. The last term represents the dissipation of turbulent viscosity in
a near-wall-region due to wall blocking and viscous damping. Far from the wall the
dissipation term becomes negligible. The closure-coefficients for the S-A turbulence
model are given in Table 5.1.

The S-A turbulence model is coupled with a wall-function that resolves the inner
portion of the turbulent boundary layer. In this approach, the numerical solution of
the S-A model in the outer region is matched with a wall-function solution of the

inner region. The selected wall-function is a law-of-the-wall expression [86] derived
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by Spalding in 1961. With a single function, it models the laminar sublayer, a buffer-
layer, and the logarithmetic layer of the turbulent boundary layer:

+12 +\3
nt=ut +e "B e 1 — kut — (m; ) — (m/é ) (5.4)

where kK = 0.41 and B = 5.5 for smooth walls. The dimensionless distance to the wall

n™ and dimensionless tangential velocity u™ are given by,

ot P d Uy
Lo
%
Tl
Uy

Here p,, p1, are the fluid density and laminar viscosity on the surface, respectively,
|17>d] is the velocity magnitude at an adjacent point located a normal distance d to the
wall, and u, is the friction velocity.

The S-A turbulence model is derived using (1) selective molecular viscosity de-
pendence, (2) dimensional-analysis, (3) empiricism, and (4) Galilean-invariance of
the turbulence viscosity[74]. Even for this high level of turbulence modeling, a po-
tential deficiency in the modeling process or uncertainty in the S-A model still exists.
Furthermore, the level of accuracy or uncertainty in the model predictions is highly
dependent on the type of application. As a consequence, the S-A turbulence model
is validated by numerous comparisons with measurements for carefully documented
flows.

The level of accuracy in the predictions of any turbulence model can be improved
by (1) model reformulations, and (2) model calibration. Model reformulation involves
the discovery and development of a new mathematical formulation that models phys-
ical processes or parameter information that was missing in the prior model. For
example, Dacles-Mariani[16] proposed a modification of the S-A model which also ac-

counts for the effect of mean strain rate on turbulence production. The modification
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is prescribed to the term S in the S-A model given by Equation 5.3 as;
S = |5] + Cproa min (0, 53] — [2451)

where

Coroa = 2.0
€051 = /4825
|Sij| = /S S
1 8Uj _ auz
2 8% 8xj
1 8uj 4 8u,
2 3% al’j

Model calibration involves the adjustment of the original model’s closure coef-

S

ficients to new applications. For example, as shown by Wilcox [90], the measured
spreading rate and velocity profile can be closely matched by assuming the mixing
length [, = ad, where « is a closure coefficient and ¢ is shear-layer thickness. The

value of the closure coefficient v are adjusted according to the type of flow as,

( 0.180, Far wake
0.071, Mixing layer
0.098, Plane Jet

\ 0.080, Round Jet

In this example, the uncertainty in the closure coefficient « contributes to model
uncertainty. This is manifested in the range of values a can assume(e.g., 0.071—0.180)

according to the type of application.

5.2.2 Model Uncertainty Analysis

Model uncertainty analysis is accomplished by performing sensitivity analysis coupled

with the Collocation method on the incoming turbulence and closure coefficients of
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the S-A turbulence model. As discussed in Chapter 2, sensitivity analysis is performed
by the complex FUN3D flow solver using a complex variable formulation. In this
approach, an output CFD variable, f, is expanded in a Taylor series using a complex

perturbation parameter h as:

df  R2Ef ik dPf htdf

f(:lj'—i-’lh):f(l')—i-l %_E@_?$+ﬂ@ (55)
Solving this equation for the imaginary part of the function yields
d 1 ih
f ~ m[f(x +1 )] 4 O(hQ) (56)

dr h

The implementation of this method is straightforward. That is, by declaring all

variables of a function as complex and applying complex perturbation to the design

variable of interest, the sensitivity derivative of a design variable can be obtained by

evaluating the imaginary part of a function. Thus, for example, applying complex

perturbations to the incoming turbulence, and evaluating the imaginary part of lift
Cp, and drag C'p coefficients yields:

(‘9CL . Im [CL(goo +ZA)]
s A

SCL =

e A
where the complex perturbation used in FUN3D is A = 107°°. Similar sensitivity

SCD =

results can be obtained for other closure coefficients. Note that the complex FUN3D
code was modified to account for input complex perturbations of the incoming turbu-
lence and the closure coefficients. The Collocation method, discussed in Chapter 4,
is then used to propagate the model uncertainty in the incoming turbulence and the
closure coefficients. Only the parameters with the strongest influence are included in

the analysis which are provided by the sensitivity analysis.
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5.3 The Onera-M6-Wing Case

The benchmark problem of interest is a compressible, transonic, fully turbulent flow
around the Onera-M6-Wing. On the wing surface at the midchord, n™ was set equal
to 2. The free-stream flow conditions (i.e., the mach number, Reynolds number,
angle-of-attack) were set to My, = 0.8447, Rez = 11.7 x 10° and o = 5.06°. The
computational domain is bounded by a rectangular box defined by —6.5 < z < 6.5m,
0<y<4m, and —6.5 < z < 6.5m, in acrodynamic coordinates relative to a semi-
span length of 1 m. The viscous surface and symmetry plane mesh was generated
from the inviscid fine mesh in Chapter 4 using the package VGRID. This viscous
mesh is shown in Figure 5.1. On the Onera-M6-Wing, no-slip surface, the turbulence
variable v is set to zero. For the far-field (top) and outflow surfaces, boundary
conditions are imposed by applying the 1-d Riemann invariants to the turbulence
variable v and the flow-field variables. At the inflow boundary, the Mach number was
set to M., = 0.8447. Note that the free-stream eddy viscosity value used for the S-A
model is ji; o = 0.009. This value can be obtained by setting the turbulence variable
t0 Voo = 1.341946 at the free-stream. For example, the eddy viscosity for the S-A

turbulence model is computed at the free-stream by,

Htco = poo,ﬁoofvl (57)

54
Vo

v +C3
~ (.009
The S-A model uncertainty considered herein arises due to uncertainty in the in-
coming turbulence V., and the closure coefficients Cy, Cha, Cyua, Cus, o, k. The
focus is on the Hermite PC, and its use in propagating uncertainty into the lift and
drag coefficients. The output statistics of the Collocation method are compared to
experimental measurements performed by Schmitt and Charpin [72]. In their techni-

cal report, they conducted measurements of pressure distributions at several spanwise
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Figure 5.1: Onera-M6-Wing viscous mesh (409, 135 nodes)

Table 5.2: Scaled sensitivity of the lift coefficient S, and the drag coefficient S,
x 10° Cui Cy Cho Cw2 Cuw3 o K Uso
scaled-S¢, +177 606 150  23.7 4620 746 —484 —8.49

scaled-S¢,, —16.7 301 3.93 322 —4.97 112 +315  +3.79

stations and aerodynamic coefficients of the Onera-M6-Wing for several test condi-
tions. These measurements were obtained in the Onera S2MA wind tunnel at Mach
numbers 0.7, 0.84, 0.88, and 0.92 for angles-of-attack from 0° to 6° and a Reynolds
number of about 12 million.. The level of uncertainty of the aerodynamic coeffi-
cient measurements for Mach= 0.8447 and an angle-of-attack of 5.06 was reported as

CLexp =~ 0.436 £ 5 drag-counts and Cp ., ~ 0.05 £ 1.5 drag-counts.
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5.3.1 The Onera-M6-Wing Sensitivity results

Figure 5.2 illustrates the scaled sensitivities of the lift coefficient S¢, due to the
incoming turbulence v, and the closure-coefficients of the S-A turbulence model. For
comparison purposes, the scaled sensitivity method, described in Borggaard[14], is
implemented. That is, the resulting sensitivities are multiply by the nominal values
given in Table 5.1. Note the computation was carried out all the way to 2200 iterations
in order to minimize the iterative convergence error. As shown in Figure 5.2, all
scaled sensitivities are stabilized after 500 iterations. As presented in Table 5.2,
the scaled sensitivities indicate that parameter C'b;, which corresponds to the term
that models the production of turbulent viscosity, exerts the strongest influence on
the lift coefficient in absolute value. Parameters x and C};, which correspond to
the wall function and eddy viscosity terms, also exert a strong influence on the lift
coefficient. In contrast, the parameters Cys, C\o, Cy3, and o, which correspond to the
diffusion and dissipation terms exert a relatively weak influence on the lift coefficient.
Furthermore, the incoming turbulence v, has the least influence on the lift coefficient
in absolute value.

Figure 5.3 illustrates the scaled sensitivities of the drag coefficient S¢, due to
the incoming turbulence v, and the closure coefficients of the S-A turbulence model.
As presented in Table 5.2, the scaled sensitivities indicate that parameter x, which
corresponds to the wall function given by Equation 5.4, exerts the strongest influence
on the drag coefficient in absolute value. Parameters C,1, Cha, Cy2, Cy3, and o, which
correspond to the eddy viscosity, diffusion and dissipation terms, exert a relatively
weak influence on the drag coefficient. Furthermore, 7., has the least influence on

the drag coefficient in absolute value.
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5.3.2 Stochastic Onera-M6-Wing Results

The stochastic Onera-M6-Wing problem was formulated by introducing uncertainty
in the S-A turbulence model through the incoming turbulence and closure coefficients.
In this application, the focus is on the Hermite PC, and its use in propagating model
uncertainty using the Collocation method. In this method, the solution of the lift
and drag coefficients are expanded to a 3"%-order Hermite chaos. Although the total
number of parameters in the S-A turbulence model is eight for this application, un-
certainty is only introduced to the parameters with the strongest influence on the lift
and drag coefficient, namely, C,;, Cyy, o, and k.

Model uncertainty is introduced through uniformly distributed closure coefficients
Cull £¢], Cy[l £¢], 7[1 £¢], and K[l & ¢]. Since Hermite polynomials represent
normal random variables, the direct transformation of a uniform[a, b] random variable

as function of a normal(0, 1) random variable ¢ is required. This is given by:

26 =a+ 0-a {5+ 5EleVD)]

Note that representations of random variables as functions of other random variables
are available in the literature [47]. Using the relation above, the direct transformation

of the closure coefficients are given by:

— [1+6 {Erf (&1/v2) }]
_ Oy |:1+€{Erf 52/\/5)}}
— 0[1—0—6{ 7(&3/V2) }]
= E[l—l—e{ 54/\/_}}

where &; through &4 are normally distributed independent random variables, and the

mean of these parameters(i.e., Cy;, Cy1, 7, and %) are given in Table 5.1. As a first
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approximation, the error € in the uncertainty interval of each random variable is set
to 5%.

Figures 5.4 and 5.5 illustrate the mean lift and drag coefficient, respectively, in
concert with their 95% confidence intervals compare to experimental data. The 95%
confidence intervals were constructed via the bootstrap method using the PC coeffi-
cients. Here, 500 bootstrap samples were ran. A 3"¢ order chaos with four random
dimensions required 35 deterministic runs for both cases. The deterministic complex
FUN3D code is called as a black-box, where the CPU time for each deterministic
run is approximately 2.0 hours. The uncertainty band of the lift of coefficient is too
narrow to account for the observed discrepancy between prediction and experiment.
Moreover, the level of uncertainty in the closure coefficients do not account for the
observed discrepancies between the lift coefficient of prediction and experiment. As
shown in Figure 5.5, the uncertainty band in drag coefficient is wider than the lift
coefficient. Furthermore, the level of uncertainty in the closure coefficients seems to
have some effect on the drag coefficient. However, the uncertainty band in the drag

coefficient does not overlap the experimental uncertainty band.
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Figure 5.5: Comparison of the drag coefficient Cp between prediction and experiment



Chapter 6
Conclusions and Discussions

The application of CFD models involves significant uncertainties that may have im-
plications on the reliability of its predictions. For example, input parameters in
CFD simulations such as geometry, free-stream flow conditions, and angle-of-attack
are mostly uncertain, and the variability associated with them can have substantial
impact on the final result. Hence, it is important to address these uncertainties. How-
ever, the main limitations in performing uncertainty analysis of CFD models using
conventional methods are associated with cost and effort. For these reasons, there is
a need for the development and implementation of efficient stochastic CFD tools for

performing uncertainty analysis.

6.1 Development and Implementation of the In-

trusive Method

One of the main contributions of this research is the development and implementation
of an implicit formulation for the Euler equations using PC for uncertainty represen-
tation and propagation(Chapter 3). In this approach, all dependent variables and

random parameters in the Euler equations were replaced with the PC expansions.
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The resulting equations were then projected onto the £** basis by using the definition
of the inner product. These projected equations resulted in (P + 1) additional deter-
ministic equations, which were solved by the same conventional numerical technique
applied to the original deterministic system. Details were presented for the full flux
vector and the Van Leer split flux vector as well as their associated Jacobian matrices
in a compact PC form.

The Intrusive method has been applied to the two-dimensional Euler equations
of gas dynamics for the unit problems: (1) flow over a wedge at supersonic speed,
(2) flow over an expansion corner at supersonic speed, and (3) flow over a cosine
airfoil at supersonic speed. Comparisons of first-order PC results show good agree-
ment with the MC simulations in which 10, 000 realizations were obtained. Although
straightforward in theory, an intrusive formulation for complex problems such as the
Navier-Stokes simulation of 3-D, viscous, turbulent flows around realistic aerospace

vehicles, can be relatively difficult, expensive, and time consuming to implement.

6.2 Development and Implementation of the NIPC
Methods

To overcome the drawbacks associated with the intrusive approach, NIPC methods
have been developed for uncertainty representation and propagation(Chapter 4). In
this new approach, no modification to a deterministic code is required. The deter-
ministic code is called as a black box, and uncertainty is modeled and propagated
solely by the PC expansions. This was accomplished by developing and implementing
three NIPC methods based on (1) the Galerkin method, (2) the Collocation method,
and (3) the GBNIPC method.

In the Galerkin method, the CFD solution is projected onto the PC k' basis

by using the definition of the inner product and the property of orthogonality. The
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resultant integral of the inner product can be estimated using the Gauss quadrature
method. For a problem with n number of random variables, the total number of
deterministic solutions required for an exact estimation is Ny > (2p — 1)", where p is
the order of the chaos.

In the collocation method, the CFD model random inputs and outputs are ap-
proximated by the PC expansions. These expansions contain unknown coefficients of
the outputs which are calculated by solving a linear system of equations that uses a
selected number of collocation points. The collocation points are selected based on

the OCM [79]. For a problem with n number of random variables, the total number

(n+p)!

IR where p is the order of the chaos.

of deterministic solutions required is Ny >

In the GBNIPC method, the collocation method is coupled with the Complex
Variable sensitivity analysis method in order to improve the computational efficiency.
The Complex Variable technique is straightforward to apply and produces accurate
sensitivity derivatives without suffering from step size related numerical problems(e.g.,
see [58]). By declaring all variables of a function as complex and applying complex
perturbation to the design variable of interest, the sensitivity derivative of a design
variable can be obtained by evaluating the imaginary part of a function. For a prob-
lem with n number of random variables, the total number of deterministic solutions
required is Ny > ﬁ, where K is the number of PC coefficients. For this method,
the number of deterministic solutions should always be greater than required in order
to achieve robustness.

The performance of the NIPC methods have been tested on three stochastic fluid
dynamic problems: (1) a compressible, supersonic, inviscid flow over a wedge corner
with uncertainty in angle-of-attack, (2) a compressible, supersonic, inviscid flow over
an expansion corner with uncertainty in angle-of-attack, and (3) a compressible, tran-

sonic, inviscid flow around the Onera-M6-Wing with uncertainty in angle-of-attack

and Mach-number.
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In the oblique shock case, the statistics (i.e., the mean and standard deviation of
pressure) obtained with the GBNIPC method were in good agreement with the results
of the MC simulations. For example, a first order chaos was sufficient to estimate
the statistics at the exit point. This observation implies that the distribution at
this point is Gaussian. In the expansion case, a fifth order polynomial expansion is
needed to approximate statistics at the exit point. This observation implies that the
distribution at this point is Non-Gaussian. For both cases(i.e., shock and expansion
cases), the values of the statistics fall within the 95% CI. However, the GBNIPC
method required significantly fewer deterministic runs compared to the MC method.
For example, the number of deterministic runs used for the shock and expansion cases
is Ny = 2 and N, = 6, respectively, compared to 1000 MC runs.

In the Onera-M6-Wing case, the necessary condition to properly establish grid
convergence is extended to unstructured meshes. This necessary condition, first in-
troduce by Salas[71] for regular-structured grids, requires that the aspect grid ratio
X be constant over subsequent grid level refinement. The modes of the pressure
coefficient for a 4'-order chaos was calculated using the NIPC methods. For the
Gauss-Hermite method, seven integration points were used along each stochastic di-
rection, which required (2p — 1) = 49 deterministic runs for an exact estimation.
For the Collocation method, a 4" order chaos with two random dimensions required
(il — 15 deterministic runs. For the GBNIPC method, the required number of

nlp!
deterministic runs was reduced to f—fl = 10. The CPU time for each deterministic
run is approximately 1.5 hours.
The Collocation and GBNIPC methods slightly over-predict the second and third
modes at the shock location at various stations compared to the Gauss-Hermite

method. This observation suggests that the sensitivity derivatives are introducing

small errors in the PC coefficients. The mean pressure coefficient in concert with its
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95% CI obtained via the GBNIPC method is compared to experimental results at var-
ious stations. Note the 95% confidence intervals were constructed via the bootstrap
method using the PC coefficients. The uncertainty band of the pressure coefficient is
too narrow to account for the observed discrepancy between prediction and experi-
ment. Moreover, the level of uncertainty in the angle-of-attack and Mach-number do
not account for the observed discrepancies between the predictions and experiments.
This observation indicates that the observed discrepancies are likely due to the CFD

model uncertainty.

6.3 Turbulence Model Uncertainty Analysis

In addition to the uncertainties associated with CFD model inputs, there are often
uncertainties associated with turbulence modeling. The uncertainty of turbulence
modeling is manifested in the large variety of available models in the literature.
Hence, it is important to address turbulence model uncertainty. This information
not only gives an assessment to the importance and contribution of each source of
uncertainty, but also an indication to where the available computational resources
should be focused.

The one-equation S-A turbulence model[74], which assumes the Boussinesq hy-
pothesis, is address in Chapter 5. It is a relatively simple model that has been opti-
mized for aerodynamic applications, most notably for flow past a wing. This model
is based on a postulated transport equation comprised of terms modeling convection,
diffusion, production, and dissipation of turbulence eddy viscosity. One of the main
advantage of the S-A model is the simplicity in imposing the free-stream and wall
boundary conditions.

Turbulence model uncertainty analysis is performed on a compressible, transonic,
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viscous, fully turbulent flow around the Onera-M6-Wing. This analysis is accom-
plished by performing Complex Variable sensitivity analysis coupled with the Colloca-
tion method on the incoming turbulence and closure coefficients of the S-A turbulence
model.

Sensitivity results indicate that the lift and drag coefficients are not highly sen-
sitive to the macrostructure scale of the turbulent flow(i.e., the large, energy rich
eddies). As expected, the lift and drag coefficients are also not highly sensitive to the
incoming turbulence at the inlet, since the turbulence model is optimized for aerody-
namic applications. However, the lift and drag coefficients are highly sensitive to the
microstructure scale(i.e., the wall function and the production of turbulence). Lastly,
the lift coefficient is highly sensitive to the coefficient of the eddy viscosity C,; in
contrast to the drag coefficient. The above observations suggest focusing resources in
the refinement of the S-A turbulence model in the microstructure scale.

Although the total number of parameters in the S-A turbulence model is eight for
this application, uncertainty is only introduced to the parameters with the strongest
influence on the lift and drag coefficient, namely, C,;, Cy1, o, and k. These param-
eters, which correspond to the coefficient and the production of turbulence viscosity
and wall function, depend among other factors for which no information is available.
The turbulence model uncertainty caused by missing variables is introduced by as-
signing uniform distributions to these parameters. These are reasonable distributions
to choose when other distributions are unknown for the problem at hand. In addi-
tion, the entire uncertainty interval is contained in a uniform random variable(e.g.,
the maximum bound).

The mean lift and drag coefficients in concert with their 95% confidence intervals
obtained via the Collocation method is compared to experimental results. Note the
95% confidence intervals were constructed via the bootstrap method using the PC

coefficients. A 37 order chaos with four random dimensions required 35 deterministic
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runs for both cases. The uncertainty band of the lift of coefficient is too narrow to ac-
count for the observed discrepancy between prediction and experiment. Furthermore,
the level of uncertainty in the closure coefficients seems to have some effect on the
drag coefficient. However, the uncertainty band in both the lift and drag coefficients
does not overlap the experimental uncertainty band.

These observations are believed to be due to the differences in computing the
uncertainty band between the experiment and prediction. For example, uncertainty
band of the experimental measurement is an estimate of the difference between the
true and predicted solution in contrast to the CI. In addition, the uncertainty of the
closure coefficients does not have a large effect on the lift and drag coefficient since

the S-A turbulence model is optimized for this aerodynamic application.

6.4 Future Work

The NIPC methods developed and implemented in this thesis addressed only random
variables, i.e., random quantities that do not vary with time or space. Random
quantities that vary with time or space can be regarded as an infinite(or finite) set of
random variables or random processes. From the perspective of the uncertainties that
occur in CFD models, the random variables in CFD parameters may vary with time
or space. For problems involving random processes(i.e., many random variables),
NIPC methods generally required a large number of deterministic runs which may
be prohibitively expensive. For this reason, research should refocus on the NIPC
method for problems involving random processes. This may include the investigation
of adaptive sampling techniques for efficient calculation of PC coefficients that are
important to the response of interest.

Lastly, since the level of uncertainty in numerical simulations is dependent upon

grid quality, it is essential to perform comprehensive grid convergence studies. More
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specifically, further research should focus on the effect of nonuniform grid refinement

to the convergence rate for unstructured meshes.
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Appendix

A

A.1 The Definition of the Operator Form, &

Consider two block matrices defined as,
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where the elements of each block matrix above, denoted by the curly brackets, are

a list of vector arrays or scalars or a combination of both (i.e., @’ can be a vector

array or a scalar or a combination of both, where i = 1,2, . n, j = 1,2,--- ,m,
k=1,2,---1). Note that n,m, and [ are integer numbers. Hence, the operator, @,
is defined as,
Ciu C12 Cimi
Co11 Co221 Comi
An,m,l S Bn,m,l =
_Cnll Cn2l Cnml_
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— — —
— — —
@i b+ a2 bug+-- 4 @ by

Ciu =
— — —
— — —
Clat = @121 bior+ @99 biog+ -+ a2+ b1y
— — —
— — —
Ciml @im1 - O1im1+ @im2 bime+ -+ @ imi s b1
— — —
— — —
Cou = @211 boni+ @2 bojg 4+ day - boay
— — —
— — —
Cogl = @o21- boor+ @ooa- Dogg+ -4 oy boy
— — —
— — —
Comi = @om1- Domi+ @oma- Doma+ -+ @omi - b o
— — —
— — —
Cpil = @pi1- bpin+ @iz bpio+ -+ apiy- bau
— — —
— — —
Cnol = @p21- bpor 4+ @poa- Do+ -+ apoy - by
— — —
— — —
Cnml = anml’bnml+anm2'bnm2+"'+anml'bnml

{71117 7112}
{72117 7212}
{73117 7312}

_{74117 7412}_

B412:

- N -

{ b 111, b 112}
— —

{ b 211, b 212}

— —
{ b 311, b 312}

— —
_{ b 411, b 412}_

—
ai11

—
a 211

—
a 311

—
a 411

—

—

- b1+ a1
—

—
“bop + dann-
—

—
“bsi+ aan-

H
ﬁ
“ by + A2
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For demonstration purposes, let n =4, m = 1, [ = 2,and write the two matrices as,

{71117 7112}
{72117 7212}
B {73117 7312}

_{?411 ) 7412}_

- N -
{ b 111, b 112}
— —

{ b 211, b 212}

,1, — —

{ b 311, b 312}
— —
{ b 411, b 412}

and use the definition of the operator, @, to write A 12 @ By as,



Appendix B

B.1 Full Flux Jacobian Matrix in Deterministic

Form

The deterministic Jacobian matrix of the full flux vector in local coordiantes is given
by,

u Ny P Ny P 0
OF _ au  p(u+ ung) pun, ne | B.1)
dq v pUN, p(w+wvny)  ny
ug*/2  p(ngho +uu) p(nyho + uw) 77—?1

B.2 Full Flux Jacobian Matrix in Standard PC

Form

Deriving the full flux Jacobian Matrix in the Standard PC form is straightforward. We
start with Eqn. (3.21) and form the Jacobian by taking the appropriate derivatives,
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which yields

afl,r
Ipu

afl,r
8ul

afl,r
8ul
aflm
Opy

8f2,r
opi

af2,r‘
8Ul

8f2,r
8vl

8f2,r
Ipy

af3,r‘
Ipu

af3,r
aul

af3,r
81}1

af?),r
op1

af4,r
Ipu
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gl Nq q

ZZZ@W@] (U, 0, W, 0, )

i=0 j=0 k=0
Ngl Nq Nq
ZZZ(”xAS)iCSzj(\I&\Ifj\Dk\Dr)
i=0 j=0 k=0
Ngl Nq Nq

Z Z Z(nyAs)z‘(Slj <\If¢\11j\11klllr>

i=0 j=0 k=0
0

Ng1 Ng Ny Ny
i=0 j=0 k=0 m=0
Ng1 Ng Ng q
Z Z Z Z P [UiOtm + (noAs)iumdj] (VW0 W)
i=0 j=0 k=0 m=0
Ng1i Ng Ng Ng
Zzzzpk nyAS iUm jl<‘11 A\ \I]k\If s >
i=0 j=0 k=0 m=0
Ng1 Ny
ZZ(”’IAS)Z&]KWZ\I}]‘I}T>
3\79(1) J];qo Ng q
Z Z Z Z Ot iU (W3 W W3 0, W)
i=0 j=0 k=0 m=0
gl Ng Ng Ng
Zzzzpk n!BAS lem<‘Ij \ \I’k\lf 1 >
=0 j=0 k=0 m=0
Ng1 Ng Ng Ng
Z Z Z Z Pk [WijOm + (nyAS) ity i) (¥, U, VU, U,.)
i=0 j=0 k=0 m=0
Ng1 Ny

Z Z(”yAS)iCsz(‘I’i\I’j\IJ,,)

i=0 j=0

1Ngl Ng Nq Ng Ng
5 ZO Z Z Z Z 5klﬂiqum<q’iqjj@kanq]m%>

=0 j=0 k=0 n=0 m=0

(B.2)
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1
+5 ) pi [0 28) {62051 -+ UntjOpm + Ut }] (W00, 0,0, 0, )

g1 Ng Ng

Ny
% Z Z Z Z(nyA)ivj(unémn + Um(sln)<\112\1/]\1/k\lfl\1/m\1/r>

i=0 j:O k=0 n=0 m=0

+
2

Ng1
,y ZZZ nyAS jlpk ‘Ij 2 \I’k\I/ >
=0 j7=0 k=0
Ng1 Ng Ng Ng Ny
3 ZZZZ Zpk nyAS {qnm ji + Unv](slm + U]Uméln}] <\Ij \ \Ifk\I/ v, >
=0 j=0 k=0 n=0 m=0
Ngl Ng Ngq Ng Ng
+ ZZ Z nﬂ»‘ Zu] Un5mn +Uu51n)<\1} v \I[kqjl\:[j y >
=0 j=0 k=0 n=0 m=0
Ngi Ny Ny
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Appendix C

C.1 Van Leer Split Flux Vector(VLSFV) in Deter-
ministic Form

Characteristic based, upwind schemes give rise to additional numerical flux functions,
e.g., Van Leer’s Flux Vector Splitting, Roe’s Flux Difference Split scheme, and other.
The components of the Van Leer split fluxes (times the surface area, As) in local

coordinates are given by

+pa(M £ 1)?

Fi = S E— As
[, (—u+2
Fy = Ff —nx( l; a)—HL}
FE o= Ft _—"y(_”‘_fyﬂa)ﬂ]
(o — 12 1V 2 2 | 2
FE o= FE (v—1)u ivz(_yl 1)ua+2a)+u —;—v (1)

where M = % is the Mach number.

C.2 VLSFYV in Standard PC Form

The PC expansion for the components of the Van Leer split fluxes require more
effort. First of all, and in contrast to the components of the full flux vector, the

quantities n,, n, and As appear individually (i.e. not just in the products n,As and
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n,As). Thus separate expansions are required for these three variables. We represent
them in the form of Eqn. 4.5 with i = 0,1,..., Ny input modes (user-defined). In
addition, all internal (or intermediate) quantities (e.g. sound speed, Mach number,
...) that are functions of ¢ and/or the input variables are also represented in the
form of Eqn. 4.5 with ¢ = 0,1,..., Ny, internal modes (user-defined). Obtaining
the expansion coefficients of any intermediate variable is relatively straightforward
and typically involves solving a small linear problem. Going through the algebra
of substituting PC expansions for the input, output and internal variables into Van

Leer’s deterministic flux vector splitting given by Eqn. C.1, one obtains the following
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components of the Van Leer PC split flux,

Nq Nznt Nznt N92

FE o= 4 ZZZZpZaJMil PAs (W00 0,0, )

szOkOlO
Ng Nga Ng2 Ng

Freo o= D > 3D (FH n< ”’“l><\1n1n1;kqfl\11>

=0 7=0 k=0 [=0

22> (Fihm,

zO]OkO

+ Z Z(Fli)iuj<\lfi\llj‘11r>
i—0 =0
Ng Nga Ng2 Ng

Fir = 202D (Fidimy, (%) (W30 0 0 0 )

1=0 j=0 k=0 [=0
(1N92N7,nt

£ 300 S (Fm, () )

’LO]OkO

+ Z Z(j:f[)ivj<q’i‘1’j‘1’r>

i=0 j=0

¢ Ng2 Ng Ng2 Ng .
Fi, = {ZZZZZ (F); [ ﬂjkﬂlm”<\1/i\1/jx1;kqfqumq/r>

1=0 7=0 k=0 =0 m=0

{Ziiz Fi)i { ujkall } QAR RVAVE

1=0 j=0 k=0 [=0

+ {ZZNZ | } (00, 0,0,)
>

Ng Ng2 Nipt
+2
( a’“) (T, 0,0, 0,)

=0 j=0 k=0

T Ziiﬂ z‘qj—k} (0, 0,0, 7,) (C.2)

7=0 k=0

where

2
4, = UjUk + VU

U = (Na) e + (ny) k01
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Note that PC representation is not unique. For example, the quantity (M 41)? in the
form of Eqn. 4.5 was expanded, although M 4+ 1 or M could have been expanded al-
ternatively. Further, note that the second through fourth components of the split flux
vector depend on all modes of the first component. This has algorithmic consequences

in the implementation.

C.3 VLSFYV in PC Compact Form

The components of the Van Leer split fluxes given by Eqn. C.2 in short-hand notation

are:
1 —
Fi, = tp0a® (M £1)2® As - (U, Ny None Nozor)
_ﬂ N
7 = | one (T)] )
+2a -
e ome (Z2)] - o
+[(FE) @u] - (Un, N,
=, -
F;,:r - [(ff) ® ny ® (7):| : <\IJN(17N927Ng27NqJ'>
+2a -
+ |:(f1:t) ® ny ® (T):| ’ <\Iqu7Ng27Nint77’>
+ [(}_f:) ® U] : <‘i}Nq7Nq,7‘>
1 .
Fi‘,[r = {(7:1i) ® [—; — 1ﬂ®ﬂ } AU N, Ny2, Ny, N2, Noor)
+ 2 =
4 (F)® o @al ¢ (YN, Nyo Nine,r)
+ 2 =
+ (fl ) ® 72 _ 1a ® a ' <\I,Nq7Nint7Nint7'r>
u®u+v®v
"‘{(-7'?) ]} ‘I/Nq Ng.Nyor) (C.3)
where

U =Nz QU+ Ny Q0.

Note again the simililarity between Eqn. C.3 and the deterministic version, Eqn. C.1.
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C.4 VLSFV Jacobian Matrix in Deterministic Form

With V2 = u? + v?, the deterministic jacobian Van Leer components of the matrix in

local coordiantes is given by;

6;5 - :t%(MJrl)(BMil)
8;5 - ig(Mil)nx
@gf = :i:g(M:tl)ny
8;; - i%(—M%ﬂ)
+ L +
B () ()

+ 2 - ~
OF; _ e A n.(—u %+ 2a) o OF;
ou v v ou

oF;  _ P (_nxny> N ne(—7 % 2a) u) OFf

v ¥ ¥ ov

a;jjf _ e (—n;cny> (ny(—z + 2a) ) 8£i

a(f _ (1 —vnf/) N (ny(—zj: 2a) +U) a;gi

855 _ (_m H(y— Dt 2a]) N ((1 — )a? ivzz(y_—l 1)ua + 2a?) N V{) aér;i
a;;ji — FF (72—7?1 [—7 £ a] + u> + (_(7 — e ijj - Dtia +247) | V;) a;gi

ag _ g (szyl Cmtd+ U) N (—(7 — 1)w? iyg(j; 1)ua + 2a?) N V;) a;f

855 - B (p(vj— 1) = - DM 2]) i (_(fy o ivg(jl_ e N V;) %
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C.5 VLSFYV Jacobian Matrix in PC Compact Form
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It should be noted that finding the derivatives of the terms like £+
d A(M=+1)?

A(M=+1)?
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(C.5)

da da O(M=£1)? 9(M=£1)?

p1’0p’  Op

oy

)

dpy
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for the Jacobians of the VLSF'V involves solving a linear problem



of the form,

oa

50

-1

W1 (&) U, (60)
Wy (61) U, (&1) d
. . dql
\I]Nint (fNint)

o (fNint ) Uy (&Vint )
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(C.6)

where @ are the deterministic modes of any generic variable for user-input N;,; modes,

¢ = (p1,w, v, pr), and 7 is the correnponding right hand side of the generic variable.

The definition of 7 is best explained through an example.

Suppose one wants to

compute the deterministic density inverse modes for a stochastic variable, rhoinv*,

then

where,
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